SCAG Earthquake Preparedness Initiative

Regional Seminars October 25 – November 9, 2016

Dr. Lucy Jones

Founder, Dr. Lucy Jones Center for Science and Society

What is your earthquake risk?

Your Risk =
Probable Loss in lives & dollars =

What the Earth does X what you do

What is your earthquake risk?

Risk = Hazard × Exposure × Fragility ÷ Response ÷ Recovery

Faulting, shaking, landsliding, liquefaction

Extent & density of built environment

Structural weaknesses

Will to recover

Ability to respond

Preparedness Now

- Available on YouTube
- From SCEC Southern California
 Earthquake Center

What is an earthquake?

Earthquake Surface

A bigger fault means a bigger earthquake

Bigger Faults Make Bigger Earthquakes

What Controls the Level of Shaking?

- Magnitude
 - More energy released
- Distance
 - Shaking decays with distance

Shaking with distance

Easter 2010 El Mayor Cucaipa

January 1994 Northridge

What Controls the Level of Shaking?

- Magnitude
 - More energy released
- Distance
 - Shaking decays with distance
- Soil conditions
 - Soft soils amplify shaking

Site Effects

- 30 m velocities
- Basin depth
- Amplify the shaking by up to 7x

What is your earthquake risk?

Risk = Hazard × Exposure × Fragility ÷ Response ÷ Recovery

Faulting, shaking, landsliding, liquefaction

Extent & density of built environment

Structural weaknesses

Will to recover

Ability to respond

San Andreas Fault

San Andreas Earthquake History

1906 M7.8

■ 1857 M7.8

• 1680 M7.7

Paleoseismology

- Cut into the fault
- Find evidence of earthquake
- Date sediments above and below
- 6 earthquakes on San Andreas fault in Coachella between 800-1680

ShakeOut Simulation of M7.8 on San Andreas

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	- 1	11-111	IV	V	VI	VII	VIII	IX	X+

Our Urban Society Is At Risk

Urban Disaster Resilience is having a society that functions after the disaster

ShakeOut Damage to Buildings

- Concrete buildings:
 - Commercial buildings from 1950s and 1960s
 - In highest shaking areas, 10% collapse
 - Biggest life loss in scenario
- Unreinforced masonry
 - Collapse of 300+ buildings
 - Complete financial loss for 90% within 30 km of fault
- Pre-1994 steel frame high rises could collapse
- 300,000 buildings with loss >10% of value

Building Damage and Destruction

Water and the San Andreas Fault

Nature Water Features

Holocene & Latest Pleistocene

Damaged Water Supply Network

- All aqueducts cross the San Andreas to get to southern California and will be broken.
 - 18 months to repair
- Widespread damage to pipes in the ground
 - 6 months to restore all service

Damaged Water Supply Network

Fire Following the Earthquake

- 1,600 ignitions requiring a fire engine
- 1,200 exceed capability of 1st engine
- 200 million square feet burnt
 ≈ 133,000 single family dwellings
 - ~1.5% of total building stock
- Property loss: \$65 billion

Communication disruption

- Electricity could be out for weeks
- Cell tower backup power lasts 4 hours
- Two-thirds of Internet bandwidth in fiber cables across the San Andreas

Communication disruption

Damaged Transportation

Damaged Transportation

San Andreas Fault at Cajon Pass

Co-located lifelines Loss of gas, petroleum, electricity, transportation, supply chain Potential for uncontrolled fire

Biggest Issues from San Andreas

- Life loss in old buildings
- Fire following earthquake
- Loss of housing
- Business disruption
 - Unusable commercial properties
 - Transportation disruption
 - Utility outages

Region-wide disruption

The other faults of southern California

Courtesy: T. Rockwell SDSU

The other faults of southern California

January 9, 1857 M7.9

Twenty five Northridge-sized faults laid end to end

WHAT'S AT STAKE?

NEW ORLEANS VS NASHVILLE ECONOMIC GROWTH

SOCIAL REPERCUSSIONS

SOCIAL REPERCUSSIONS

Break

- Which of these is the worst problem for your city?
- Life loss in old buildings
- Fire following earthquake
- Loss of housing
- Business disruption
 - Unusable commercial properties
 - Transportation disruption
 - Utility outages

What is your earthquake risk?

Risk = Hazard × Exposure × Fragility ÷ Response ÷ Recovery

Faulting, shaking, landsliding, liquefaction

Extent & density of built environment

Structural weaknesses

Will to recover

Ability to respond

Hazard

Use science to understand it

Exposure

Stay off the faults

Too late!

Response

We've got the best

Fragility

Recovery

NECESSARY SYSTEMS

CRITICAL INFRASTRUCTURE

NECESSARY SYSTEMS

Buildings that Can Kill

- Unreinforced masonry (pre-1935)
- Soft-first-story (pre-1980)
- Non-ductile concrete (pre-1980)
- Steel moment frames (pre-1997)

Retrofitting URMs has saved lives

- In the Northridge earthquake:
 - No one died in a URM
 - Only 19% of inspected URMs needed repairs compared to 33% of buildings overall
- Statewide
 - Jurisdictions have retrofitted or demolished 88% of URMs with mandatory programs
 - Only 22% with voluntary programs

Current building code

Impaired buildings are economic loss

In California, many more buildings impaired

- Average of Loma Prieta & Northridge
- For each collapse
 - + 13 red tags
- For each red tag,
 - + 3.8 yellow tags
- = 63 impaired per collapse

53

CAN WE SURVIVE "THE "BIG ONE"?

Christchurch 2010

Christchurch, February 22, 2011 M6.3

Christchurch 2015

Most people don't know what the code provides

What is the building code's objective?

Survey of 814 people by Dr. Keith Porter, U. Colorado:

Most people want more than the code provides

What should it ensure?

Four example cities

- San Francisco
 - Community-driven
- Los Angeles
 - Mayoral leadership
- Santa Monica
 - Staff initiative
- West Hollywood
 - Council initiative

Community Action Plan For Seismic Safety (CAPSS)

- San Francisco's seismic safety plan
- **2002 2013**

 30 year plan to address building deficiencies

Here Today—Here Tomorrow: The Road to Earthquake Resilience in San Francisco

A Community Action Plan for Seismic Safety

Resilience by Design

Los Angeles seismic safety plan

2014

Fortify Our Water System

- Water for fire fighters
- Protected fault crossings for the aqueducts
- Less dependence on imported water
- Seismic resistant pipes

Resilience By Design Program

Enhance Reliable Telecommunications

- MOU with service providers to manage emergencies
- More resilient power
- Promote City-wide Wifi access
- Stronger towers

Cell tower in Tokyo after March 2011 M9

Strengthen Our Buildings

- Mandatory retrofit of soft-first story buildings
- Mandatory retrofit of concrete buildings
- Voluntary rating system
- "Back to Business" inspection program
- Excessive Damage ordinance

Santa Monica

Initiated ordinances after Northridge City staff is working with City Council to develop new approaches Holding community meetings Several ordinances to be considered in winter

West Hollywood

West Hollywood

- Initiated by City Council
- Staff brought in consultants
- Established expert advisory committee
- Took about a year to come to Council
 - Council asked for more outreach

weho.org/seismic

68

Where are you?

Self-evaluation form

What's next?

- Take self-evaluation back to your jurisdiction
- Plan to attend all-day Workshop in SCAG's Earthquake Preparedness Initiative*

* See Exit Survey

Contact

drlucyjonescenter.org

