A Smart Mobility Platform with Equitable Peer-to-Peer Congestion Pricing and Its Policy and Equity Implications

Introduction

\square Motivation

Researchers and engineers have dedicated significant effort to veloping advanced route guidance systems.
The goal of such systems is to spread travelers more efficiently, teering the transportation networks to the System Optimal (SO) state.

Figure 1 Illustration of Spreading Travelers and Reduce Congestion
$>$ Guiding travelers to higher-cost routes without compensation can create unfairness issues, potentially deferring participation in such route guidance systems.

Objectives and Contribution

- Introduce a novel smart mobility platform with equitable peer-topeer congestion pricing that offers route and monetary exchange guidance for travelers.
Show that the proposed platform can steer the transportation network to the Dynamic System Optimal (DSO) state, maintaining fairness among travelers.
- Examine the policy and equity implications of the proposed platform using the Los Angeles I-10 expressway corridor network datase
Key words: Route guidance system, Dynamic system optimal (DSO), Envy-free, Fairness, Peer-to-peer
Assumptions

Assumptions - An App-based Platform

An app-based centralized route guidance platform that enables travelers to collaborate on their route choices with peer-to-peer

Figure 2 Illustration of A Centralized App-based Platfor
A Behavioral Mechanism for Fairness
Envy - A Behavioral Mechanism for Fain
$>$ Agent i envies agent j if agent i prefers i's bundle to his/her own bundle (Varian, 1974).

$x_{j}>_{i} x_{i}$
x_{i} an allocation of some fixed amount of
resources among n agents
resources among n agents
$x_{i} x_{j}$: agent i and j 's bundle
Figure 311 Ilustration of Envy
in the Cake-cutting Scenario
An allocation is equitable if nobody prefers other agents' bundles to his/her own, resulting in an envy-free state

I: the set of all agents

- Assumptions - Traveler's Behavior
> Travelers are utility maximizers while minimizing their envy.

Problem Description

$>$ The proplen \checkmark Given:

\checkmark The proposed platform aims to address this problem:
1 Given:

1. a set travelers with ODs, departure times, and Values of Time (VOT);
2 a transportation netwok
2. a transportation network, composed of lins, and nodes;
\checkmark Determine, for each Origin-Destination-departure Time (
(ODT) $)$ triad: Determine, for each Origin-Destination-departure
the Dynamic System Optimal (DSO) set of paths;
3. the number of travelers on each path;
4. the payments made eto or received from the platform by each traveler,
5. that (i) minimize total system travel time and (ii) ensure no traveler feels envy, that (i) minimiziz totala ssystem travel t time and (i) (i) enssure enoch traveleler;
regarding their path's travel time and the payments transacted. Methodology

\square Definition of Envy

- Agent i 's envy towards agent j, represented as $e_{i j}$, is defined by the equation below:

$$
\begin{gathered}
e_{i j}=\left(V_{i j}\left(\theta_{i}, t_{j}, p_{j}\right)-V_{i i}\left(\theta_{i}, t_{i}, p_{i}\right)\right) \delta_{i j} \\
\forall i, j \in I^{r s t} ; i \neq j
\end{gathered}
$$

$V_{i j}\left(\theta_{i}, t_{j}, p_{j}\right)$: agent ${ }^{i}$'s valuation on agent j 's selected route with its travel time t_{j} $\delta_{i j}= \begin{cases}1 & \text { if } e_{i j} \geq 0 \\ 0 & \text { otherwise }\end{cases}$

- Problem Formulation

> A multi-objective mixed integer programming problem, calculating a solution $(\boldsymbol{x}, \boldsymbol{p})$ to minimize total system travel time and total maximum envy.

\square Solution Approach

Simulation Results

 May 2-3 | JW Marriott Desert Springs Resort \& Spa in Palm Desert May 2-3 | JW Marriott Desert Springs Resort \& Spa in Palm Desert

- Individual Results

Conclusion

- Envy is a simple metric and behavioral paradigm for transportation equity analysis when individual preference data (e.g., VOT, the value of urgency) are available.

With 7.75% of travelers collaborating on their routes, the proposed platform can direct the transportation system to the Dynamic System Optimum (DSO) and envy-free state, leading to a 13.06% increase in space mean speed.
The average payment on the proposed platform is $\$ 0.904$, markedly lower than the LA I-10 expressway tolls, which range from $\$ 4.25$ to $\$ 5.46$ during peak periods.
In cases where budget balancing isn't a concern, revenue from the platform can be allocated to support policy alternatives, like public transport, or to fund infrastructure development in

Selected Reference

Firn

Acknowledgement

