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Abstract

While there has been no shortage of discussion of urban big data, smart cities, and cities as

complex systems, there has been less discussion of the implications of big data as a source of

individual data for planning and social science research. This study takes advantage of increasingly

available land parcel and business establishment data to analyze how the measurement of prox-

imity to urban services or amenities performed in many fields can be impacted by using these

data—which can be considered “individual” when compared to aggregated origins or destina-

tions. We use business establishment data across five distinctive US cities: Long Beach, Irvine, and

Moreno Valley in California; Milwaukee, Wisconsin; and the New York borough of Staten Island.

In these case studies, we show how aggregation error, a previously recognized concern in using

census-type data, can be minimized through careful choice of distance measures. Informed by

these regions, we provide recommendations for researchers evaluating the potential risks of a

measurement strategy that differs from the “gold standard” of network distance from individually

measured, point-based origins and destinations. We find limited support for previous hypotheses

regarding measurement error based on the abundance or clustering of urban services or ame-

nities, though further research is merited. Importantly, these new data sources reveal vast differ-

ences across cities, underscoring how accurate proximity measurement necessitates a critical

understanding of the nuances of the urban landscape under investigation as measures appear

heavily influenced by a city’s street layouts and historical development trajectories.
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Introduction and background

There is no shortage of articles discussing and defining “big data” in the spatial, and
particularly the urban spatial contexts (Batty, 2013; Glaeser et al., 2015; Kitchin and
McArdle, 2016; Shearmur, 2015; Ye and He, 2016). The “smart city” represents the ability,
given the proliferation of timely sensor-based data, to see city planning in the span of days
or minutes rather than years or decades (Batty, 2013), transformed through technology-
enabled data such as Google Street View, geo-referenced tweets, and real-time captures of
human or vehicular travel. Additionally, the paradigms of “computational social science”
(Chang et al., 2014) or “data-driven science” (Kitchin, 2014) challenge the philosophical
underpinnings of urban scholarship and consider the city as a complex adaptive system
comprised of myriad entities and their interactions (Batty, 2005).

Kitchin and McArdle (2016) argue that the key definitional traits of big data are velocity
and exhaustivity. While much attention has been paid to new types of high-velocity urban
data, less emphasis is placed on the contribution of two exhaustive big data sources that are
permeating both planning practice and social science research: tax parcels and business
establishments. Government administrative records—particularly those from local and
regional agencies—are increasingly available and typically feature both georeferencing
and universal or near-universal coverage (Einav and Levin, 2014; Newbold and Brown,
2016). In response to calls for increased data transparency, many city agencies have
placed comprehensive land, tax, and public finance records online at no cost to citizens—
or researchers (Arribas-Bel, 2014). Longitudinal data are increasingly common as some
counties and municipal planning authorities began digitization projects years ago.
Commercially produced, georeferenced datasets of business establishments are increasingly
used in urban and regional research and have been used extensively for their ability to track
business relocations, interindustry linkages, and specific business types (Funderburg and
Zhou, 2013; Meltzer and Capperis, 2016; Neumark et al., 2005).

While these data sources are less dynamic and less popular than Google Street View and
Twitter, for example, both land parcels and business establishments are very much “big” in
terms of volume, computing requirements, and programming knowledge. As Shearmur
(2015) describes, such exhaustive data have the possibility of revealing different conclusions
than their census analogues since the scale of measurement is much finer. In particular, they
are individual data which record the “population” of structures in the built environment or
of business establishments in a city. The observation in either of these data sources is an
individual (land parcel or business) at a discrete point in space, at once addressing the
ecological inference problem and the Modifiable Areal Unit Problem (Openshaw and
Taylor, 1981)—key concerns in “small data” research.

While the implication is that socioeconomic analysis could yield different findings using
these individual level data, they also raise the concern that as the sample approaches the
entire population, interpretation is a-theoretical and inference approaches pure description
(Newbold and Brown, 2016). While Anderson (2008) claims that big data will bring the
“death of theory,” the more optimistic perspective of Einav and Levin (2014) is that it will
instead allow for sharper tests of existing models and theories of human behavior, and if
anything, require more of an organizing theory to make research progress. Parcel-level
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datasets have long been used by agricultural and natural resource economists for their
ability to link observed spatial patterns of urban land use with land change processes, for
example in studies of zoning’s role in land conversion at the urban–rural fringe (Bell and
Irwin, 2002). Additionally, the contention that such data are merely descriptive is no longer
problematic when “big” data are leveraged with other sources, like the census (Glaeser et al.,
2015). Glaeser also notes that “many practical problems in cities do not directly require
causal inference,” highlighting their utility for planners and practitioners as well as
researchers.

This paper is concerned with the implications of integrating these two sources of big
data—tax parcels and business establishments—into the measurement of the proximity of
urban services. A varied literature discusses accessibility measurement in urban space. In
planning and public health, applications often focus on healthy food access or the equity of
public service provision (Apparicio et al., 2008; Talen, 2003). A broader literature in geog-
raphy and planning on spatial interaction addresses accessibility and urban morphology
through an explicit treatment of the relationship between origins and destinations. Spatial
interaction modeling can be used to evaluate not only service accessibility but job access and
transportation demand (Bhat et al., 2002; Fotheringham and O’Kelly, 1989; Kwan, 1998).
However, distance measures are also relied upon by a wide array of social scientists studying
neighborhood effects including economists, criminologists, sociologists, and urban planners
who are concerned with how proximity in urban space affects outcomes like health, wealth,
crime, or property value appreciation.

This paper compares methods of measuring accessibility between residential land parcels
and neighborhood-level destinations such as restaurants, doctor’s offices, and grocery stores
with an empirical focus on the latter given its prominence in the literature. Using the
hypothesis that the network distance between a home (origin) and a business (destination)
is the optimal measure of access, we assess two spatial issues through comparison to this
newly available “gold standard”: the aggregation error that arises from zonal rather than
individual representation of origins and destinations and the use of a street network topol-
ogy versus straight-line (Euclidean) distance. The purpose of this analysis is to demonstrate
how this finer-scaled, data-enabled approach toward proximity informs research on neigh-
borhoods and urban spatial structure. Furthermore, we gauge how these foundational issues
might be impacted by urban morphology—namely, the abundance and clustering present
across an array of destination types. Contrasting the empirical results with the growth
history and development trajectories of the five cities analyzed (Long Beach, Irvine, and
Moreno Valley in California, Milwaukee, Wisconsin, and the New York borough of Staten
Island) provides added insight as to how urban morphology impacts access measurement.

While the conclusions hint at some possible best practices for researchers and practi-
tioners alike, what is most striking about our results is how these fine-grained data illustrate
interurban differences in measurement error. All five cities—even the three located in
Southern California—have different development histories and, when compared to the
“gold standard,” demonstrate the importance of a nuanced understanding of the urban
landscape of the region under investigation in the measurement of proximity—an insight
revealed largely through these new sources of data.

Measuring proximity in urban space

A number of studies provide a comparison of various methods for measuring the accessi-
bility between origins and destinations in urban space. Chief concerns are aggregation error,
the imprecision that arises from using areal units to represent individual origins or
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destinations, and the error arising when straight-line or Euclidean distance is used rather
than a more accurate street network topology. Specific results vary across studies, many of
which have applications in public health, such as measuring the accessibility of health
services (Apparicio et al., 2008), the proximity of tobacco retailers (Duncan et al., 2014),
recreational amenities (Hewko et al., 2002), or the walkability between homes and urban
destinations (Oliver et al., 2007). A particular interest has emerged in measuring healthy
food access and the identification of so-called food deserts. Research here largely concludes
that while measurement strategies might produce different results, most are able to identify
the same key underserved areas regardless of aggregation error or use of Euclidean distances
(Leete et al., 2011; Sparks et al., 2010). Spatial interaction research has also advanced to
include sensor-based mobility studies and space-time analysis (Gao et al., 2013; Ye and Rey,
2011); however, the present study focuses instead on data sources and measurement.

We take into account two increasingly available fine-grained data sources: business
establishments and residential land parcels. Parcel-level land-use data are widely used in
studies of agricultural land conversion which seek to investigate the impact of property-level
characteristics like slope, cost, and zoning designation to the likelihood of development (Bell
and Irwin, 2002; Kane et al., 2014) with the advantage being vastly improved statistical
identification since the scale matches that of the land-use decision maker.

In addition to administratively sourced parcel data, commercially provided business
establishment data are increasingly used in urban and economic research. Neumark et al.
(2005) provide a thorough evaluation of Dun and Bradstreet’s new National Establishment
Time Series (NETS) data. This is a commercial database of business establishments by
location compiled and telephone-verified by Walls & Associates with an expressed purpose
for sale to other businesses. Of relevance for researchers seeking to adopt these data is an
early finding by Neumark et al. (2005) of a substantial overcount of establishments and
employment when compared to official US Bureau of Labor Statistics figures: 17–22%
higher for employment and 38–63% higher for establishments. The overcount was high-
est—184%—for employment in businesses with one to four employees, substantially chang-
ing the ability to understand small business location with higher resolution data.

Proximity to businesses or other destinations in urban space is of key concern to a wide
variety of social science researchers. For example, studies of crime and place have found that
proximity to certain types of businesses and other urban features such as freeways or parks
at the block or street segment scale can increase or decrease the risk of violent and property
crime (Groff and McCord, 2012; Kim, 2016). In addition to the increasingly apparent scale-
sensitivity of this line of research, many such studies frequently use Euclidean distance
measures since they are less computationally demanding. The present study’s comparison
of individual-level measures versus aggregated origins and destinations using Euclidean and
network distance can help to assess the potential benefits of increasingly “big” available data
for a wide variety of researchers.

Foundational spatial issues

Distances can be calculated either by solving on a street network topology, or using a
Euclidean or “straight-line” measurement. The latter measurement requires far less data,
GIS processing, and specialized knowledge and might be preferred by planners, practi-
tioners, or social scientists due to its simplicity and efficiency. Sparks et al. (2010) find
that a shorter Euclidean distance threshold—roughly 35% shorter—approximates a street
network distance; however, street network layout and urban morphology more generally
could impact this (though few multi-city comparisons exist). While network distances are
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not new to accessibility research, topological concerns remain challenging especially over

short distances or when measuring pedestrian access. Van Eggermond and Erath (2015)

demonstrate how differences between Euclidean and network measurements are far greater

than differences between networks of different quality.
Aggregation error, a concern no matter the topology, arises when a single point is used to

represent an area or zone comprised of a spatial distribution of individuals or destinations

(Kwan, 1998). Since populations are often available only in aggregated areas, the entire

population of a census tract, for example, is placed at a single point: the tract’s centroid.

While it is fairly common practice to use smaller scale census block data and area-weighted

interpolation to improve tract-level accessibility estimates, even census blocks represent

aggregated areas of individuals. Zoraghein et al. (2016) use parcel-level data to refine

block-level population estimates; however, to our knowledge, this methodology has not

yet been used for measuring proximity. Furthermore, using GIS to link a block centroid

to its position on a street network is an imperfect exercise and a possible source of aggre-

gation error even at this fairly fine scale. Van Eggermond and Erath (2015) explore these

issues using pedestrian-specific street networks with varying degrees of realism, finding that

the connection of buildings to the network has increased importance at a finer scale.

Aggregation to blocks in network space might compound sensitivities based on which direc-

tion a building’s entrance faces, or whether or not it is trivial to traverse to the other side of

a block.
In addition, most prior work only considers the aggregation error arising when popula-

tions or origins are zonal measures. Most studies, such as those on healthy food access, focus

on a fairly small count of a single type of destination. Given the computational ease of

calculating Euclidean distances in a GIS or conventional statistical software, an understand-

ing of the associated aggregation error would be of use to practitioners and researchers

using proximity as a covariate in a statistical analyses of neighborhood-level well-being. For

example, controlling for the region-wide accessibility between homes and liquor stores might

be helpful in understanding neighborhood-level crime (Pridemore and Grubesic, 2012).

Establishment distribution and urban morphology

In addition to spatial methodological issues in accessibility measurement, we attempt to use

these data and the notion of a “gold standard” to gauge how proximity measurement varies

based on the abundance and spatial distribution of various types of urban destinations

services, as well as provide a qualitative comparison of how results vary across cities that

differ based on their development histories, street layouts, and zoning legacies. For example,

the clustering of retail businesses has been shown to be an outcome of demand externalities

(Nelson, 1958), yielding a very patchy spatial distribution for some business types. Shopping

centers and malls are one logical outcome. Zoning as well as policies directed at enhancing

commercial concentration can result in clustering as opposed to regularity (see, e.g., Boarnet

et al., 2010).
Owing to an available longitudinal parcel dataset, three of this study’s cities are in

Southern California, a region of 19 million residents known for its urban sprawl and auto-

mobile culture. However, considerable variation exists across its more than 200 local juris-

dictions in street network layout, planning history, and the resultant spatial distribution of

homes and businesses. In order to expand the scope of this paper beyond one metropolitan

region, we also investigate Milwaukee, Wisconsin, a legacy industrial city in the American

Midwest, and Staten Island, a comparably sized borough of New York City.
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Material and methods

Study area

At nearly 1=2 million residents Long Beach is the fifth-largest city in California, lying at the
southern edge of Los Angeles County. The city has a variety of neighborhood types includ-
ing a historic downtown, traditional suburban enclaves, disinvested and high-crime com-
munities, and a large international port (“Intra City,” 2016). Long Beach has sizeable
populations of all the region’s racial/ethnic groups, a variety of income levels, and a
nearly even split between single-family and multi-family housing (“Profile of the City of
Long Beach,” 2015). Its street network is largely gridded and predates Second World War.

Irvine, in neighboring Orange County, stands out as an extreme example of master
planning (Cronon, 1995). The Irvine Company, a legacy of the 19th-century landowners’
expansive ranches, strategically developed the town over several decades. Irvine it is known
for its high-end housing, gated communities, and carefully manicured commercial areas.
The Irvine Company maintains exceptionally tight control over zoning and land-use regu-
lations, and the street networks consist largely of winding, high-speed arterial roads with
residential communities set between them. While its business subcenter nearly rivals down-
town Los Angeles for regional dominance (Kane et al., 2016), it is a rare example of being
entirely synthetic in that its location has no historical precedent (Forstall and Greene, 1997).

Moreno Valley, in inland Riverside County, is an archetypical urban fringe boomtown.
Its history of growth coalitions, incorporation battles, and rapid, unplanned growth—par-
ticularly during the 1980s—contrasts with Irvine’s more top-down planning (Jonas, 1999).
Its roots as an agricultural region as well as its flatter topography contribute to a more
typical 1=2-mile street grid with single-family homes developed on sections within, and retail
on major N/S or E/W roads.

Milwaukee, Wisconsin is a mid-sized city along Lake Michigan’s western shore.
Incorporated in 1846, the city’s history is characterized by industry and immigration.
While it could be considered as part of the United States’ “Rust Belt” and is well below
its mid-century population peak, the city remains economically vibrant. It consists of both a
historic core and areas annexed in the 1950s and 1960s with a suburban land-use character
(Hegerty, 2015). Staten Island is by far the smallest and least dense of New York City’s five
boroughs. Although settled during the 17th century, the borough was not integrated into
New York City until 1898 and its conversion from agricultural to largely residential use
proceeded gradually (Rizzi, 2012).

Table 1 provides summary statistics of each city’s street network characteristics from the
US Environmental Protection Agency’s (EPA) Smart Location Database (Ramsay & Bell,
2014). Total road network density roughly measures the overall presence of thoroughfares,
while street intersection density may be more closely related to accessibility since it approx-
imates the ability to traverse the street network. “Auto” and “pedestrian” designations
measure streets based on speeds, intersection type, and lane count to gauge the appropri-
ateness of auto or pedestrian travel, though no information on sidewalks is included. Long
Beach scores highest on most measures, consistent with its older, more rectilinear street
layout. Milwaukee and Staten Island are comparable but slightly lower in both pedestrian,
total, and intersection density—expected of legacy cities. Irvine, which incorporated in 1971,
has a much lower intersection and pedestrian density but a far greater density of auto-
oriented links, consistent with its predominantly high-speed arterial roads. Moreno Valley
is the newest city and has the lowest street network, street intersection, and pedestri-
an density.
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Data sources

The primary data sources used in this study are parcel-level (cadastral) data used to identify
residences (origins) and point-based business establishment data used as destinations. The
Southern California Association of Governments (SCAG) maintains 2012 land-use records
at the parcel-level for Los Angeles, Orange, Riverside, San Bernardino, Ventura, and
Imperial Counties. A four-digit classification of land uses allows for the identification of
each parcel’s land use. For this study, we isolate residential parcels. Milwaukee parcel data
are from the County Assessor’s database (Master Property Record Data, 2016) while Staten
Island’s are from the New York Department of City Planning (MapPLUTO, 2015).

While these cities represent a convenience sample, the data structure, time period, and
land-use classification scheme differs widely across municipal or regional data providers
(Kane and Clark, 2018). Alternative approaches using sensor-based data might allow for
a statistically robust sample of cities which is not currently feasible using administrative
records since the lack of inter-regional harmonization necessitates deep familiarity with each
dataset. For example, Gebru et al. (2017) used Google StreetView in 200 US cities to esti-
mate socioeconomic characteristics of neighborhoods based on the types of cars parked on
streets. While this approach using a single data source allows for statistically robust interre-
gional comparison, administrative records offer more robustness than sensor data since they
are official measures which have been verified and adopted by governments.

Reference USA point-based business establishment data cover 1997–2014 (Infogroup,
2015) and provide coordinate data, an employee count, and the North American Industry
Classification System (NAICS) code for every business establishment nationwide. These
commercial data are similar in construction and source as the commonly used NETS.
Our examination of topology and aggregation error will focus on a single category—grocery
stores—given both their prominence in the food access literature and that they are near the
mean in abundance in our data across 31 establishment types. Street network data are
derived from Environmental Systems Research Institute’s (ESRI) North America
Detailed Streets (ArcGIS, 2014) and distances are solved on the network using ArcGIS
10.4 software (“ArcGIS 10.4,” 2016).

Measures of accessibility

Figure 1 depicts six strategies for measuring the level of accessibility between origins and
destinations, each labeled with a letter. The top-left corner indicates the “gold standard”
against which alternatives are compared and is the parcel-to-establishment

Table 1. Population and street network characteristics in study areas.

City State

Populationa

(2010

Census)

Population

per square

mileb
Year

incorporated

Total road

network

density

Street

intersection

density

Network

density: facility

miles of auto

links per sqm

Network density:

facility miles of

pedestrian links

per sqm

Irvine CA 212,375 3,238 1971 22.29 95.41 5.71 15.25

Long Beach CA 462,257 9,186 1897 26.84 151.84 1.19 21.23

Moreno Valley CA 193,365 3,772 1984 15.33 62.89 1.27 12.42

Milwaukee WI 594,833 6,185 1846 23.85 118.93 1.81 18.64

Staten Island NY 469,645 8,028 1898c 23.17 116.96 1.50 19.18

aSource: Ramsay and Bell (2014).
bSource: American Community Survey (2015), cYear of integration into New York City.
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(or, parcel-to-parcel) distance measure along the street network. The next column abstracts
origins to census blocks, measuring distance to their centroids, similar to prior studies using
zonal population measures. The third column also abstracts destinations to blocks, i.e.,
rather than measuring the distance to an actual destination we use the distance to the
centroid of the nearest block which contains that type of establishment. This type of data
structure might be used when establishments are too numerous or when due to data cen-
soring concerns destination data are only available in zones.

Lines connecting measurement strategies indicate the comparisons undertaken.
Comparisons along the verticals of Figure 1 (A–D, B–E, and C–F) investigate the
Euclidean versus network tradeoff. Comparisons along the horizontals of Figure 1 (A–B,
A–C, D–E, and D–F) analyze aggregation error stemming from the use of census blocks as
zones to represent destinations (B and E) or both origins and destinations (C and F).
Diagonals (A–E and A–F) reflect the mixed effect of aggregation error and topology.
Point E is a situation that might be faced by a planner comparing the accessibility of
between a set of point-based destinations and an aggregated source of population and
uses Euclidean distances in order to reduce computing needs. Point F might occur when
using zonal destination data (e.g., US Census ZIP Code Business Patterns) and using
Euclidean distance to reduce computing needs—in particular if an accessibility study is to
be compared across multiple urban regions.

This study examines three commonly used measurements of accessibility:

1. The distance between the origin and the nearest destination of that type.
2. The number of destinations within a threshold distance of the origin. A 1=2-mile threshold

distance is generally considered as the upper end of walkability (Congress for the New
Urbanism (CNU), 2000). We also include a 1-mile threshold since this study’s focus is not
solely on walkability and a 3-mile threshold to better capture the retail trade areas.

3. A variety of gravity type measures which weigh nearby destinations highly and further
away destinations—up to a certain threshold—less.

While a gravity type measure has the advantage of considering proximity and multiple
destinations, results are sensitive to functional form. We explore two common measures: a
power function and an exponential decay function (Fotheringham and O’Kelly, 1989). The
power function is defined as

X

j

1

daij
8k

where dij is the distance in feet from parcel i to establishment j for all establishment types k
and a is a decay parameter. We examine three previously examined parameters (a¼ 0.5, 1.0,

Figure 1. A typology of accessibility measurement.

8 Environment and Planning B: Urban Analytics and City Science 0(0)



and 2.0) in order to provide an intuitive comparison for planners and researchers. While
parameter choice can alter results substantially, given this paper’s broad comparison of non-
gravity measures, different distance cutoffs, and network versus Euclidean forms we eschew
a complete simulation of all possible parameters. In instances where origins and destinations
are at the same point (e.g., a small store in the lobby of a residential building), a correction
of 0.02 miles was added to prevent an infinity value. Due to this requirement, the exponen-
tial decay function may be better suited for intraurban analysis and is given by

X

j

1

ebdij
8k

where b is the distance decay parameter which we evaluate at b¼ 0.2 and 0.5, informed by
Kwan (1998). Pearson’s correlation (r) is used for comparing measurements based on near-
est distance (1) and counts (2) which are scalar measures that can be directly correlated.
Spearman’s rank correlation (rho) is used for gravity type measures (3) since they are
functions of the above equations rather than direct measurements.

Measures of abundance and clustering

Hewko et al. (2002) and Sparks et al. (2010) note that the abundance and clustering of
destinations may influence aggregation error. As an additional analysis in Long Beach only,
we use the simple Nearest Neighbor Index (NNI) to measure the level of clustering of each
of 31 different establishment types (Lee and Wong, 2000). NNI compares the distance of
each establishment to its nearest neighbor of the same type to a null hypothesis of spatial
randomness. NNI for establishment type k is given by

NNIk ¼

X
i
di

n
0:5ffiffiffiffiffiffi
n=A

p

where di is the distance between establishment i and its nearest neighbor of type k, n is the
total number of establishments of type k, and A is the area of a minimum enclosing rectangle
around all establishments of type k. NNI values below 1 indicate high clustering while
values above 1 indicate dispersion. Inference is achieved using a z-score relating the
actual and random (hypothetical) spatial distribution. Euclidean distance-based NNI
rather than network distance-based NNI is used to ensure that the statistic is not dependent
on street network characteristics.

Results

Aggregation error

Results for aggregation error, which compare the effect of substituting parcel-to-parcel
measurement with block-to-parcel or block-to-block, are shown in Table 2.

A–B (network distances) and D–E (Euclidean distances) measure the effect of substitut-
ing zonal measures of destinations. In the older cities of Long Beach, Milwaukee, and Staten
Island this has almost no effect on measurement no matter the distance threshold or func-
tional form with all correlations above 0.96 and most above 0.99. No matter whether
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a researcher is interested in measuring the nearest destination, a count of destinations within
a threshold, or a variety of possible distance decay-based measures, so long as either origins
or destinations are point-based there is minimal loss of accuracy. However, this is not the
case in Irvine or Moreno Valley where several correlations are near or below 0.8 (shown in
boldface). In Irvine, the A–B correlation for distance to the nearest destination is only
correlated at the level of r¼ 0.916. Gravity measures using a 1=2-mile threshold are also
very low (near 0.8) while a 1-mile threshold is an improvement (near 0.91) and a 3-mile
threshold shows very minimal error, with correlations between 0.94 and 0.98 depending on
functional form. In Moreno Valley, gravity-type 1/2-mile measures for A–B correlation
perform especially poorly with most values around 0.77. Gravity-type 1-mile measures
suffer less aggregation error than 3-mile variants. A 3-mile threshold is inferior using a
power law, especially with a steep decay (e.g., a 0.7614 correlation for power a¼ 2, 3-mile).

Turning to A–C and D–F, which measure the impact of abstracting both origins and
destinations to polygons versus a point-to-point “gold standard,” we see that the distance to
nearest measure is deficient across all cities, especially using network distances. In
Milwaukee (0.794) and Staten Island (0.744), these are the only correlations of any kind
below 0.8. The D–F (Euclidean) equivalent measures are actually higher, which supports the
conclusion of Van Eggermond and Erath (2015) who suggest that topological issues become
magnified at short distances.

In the legacy cities of Long Beach, Milwaukee, and Staten Island, A–C and D–F corre-
lations are slightly lower than A–B and D–E, indicating that using zonal measures for both
points is costly; however, in most cases, correlations remain above 0.9. For count or gravity
measures in all cities, a wider threshold is better: correlations tend to be higher at 1-mile
than 1=2-mile and at 3-miles than 1-mile. Minimal differentiation can be seen between expo-
nential b values of 0.2 or 0.5. The steepness of the a distance decay parameter in the power
function depends on both the city and the distance threshold. With a generous 3-mile
threshold, a steeper parameter typically increases aggregation error. However, it appears
to have less impact at a narrow 1=2-mile threshold, with almost no change in correlation in
the California cities and a slight decrease in correlation value in Milwaukee and
Staten Island.

In the newer developing cities of Irvine and Moreno Valley, aggregating both origins and
destinations results in some very deficient measures: as low as 0.34 for A–C comparisons in
Irvine which use a count of destinations within 1=2-mile. This suggests that while aggregation
error can be minimized, choosing an appropriate accessibility measure is very important. In
Moreno Valley, the 1=2-mile threshold which is most deficient with correlations hovering
around 0.5—roughly the same as Irvine. At 1-mile thresholds in Moreno Valley, correla-
tions improve to around 0.8, improving to around 0.9 in most cases at 3 miles (a steeply
decaying power function is an exception at 0.728). However, this improvement at wider
thresholds is not seen in Irvine: many 1-mile measures are around 0.6 and some 3-mile
measures are below 0.8.

Case A–C demonstrates the most consistently low correlations, again highlighting Van
Eggermond and Erath’s (2015) point that network measures can strongly affect aggregation
error, especially with narrow distance thresholds. These results suggest that this is much
more problematic in newer cities. In the legacy cities of Long Beach, Milwaukee, and Staten
Island, the distance to nearest measure can raise concerns, which makes sense in a denser
urban context with more rectilinear streets: the point at which a destination is located on
network is more important.

Based on these findings, aggregation error has the potential to be problematic but this
can be mitigated through careful choice of measures such as avoiding 1=2-mile thresholds and
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the use of zonal measures for both origins and destinations. Consistent with Sparks et al.
(2010), Apparicio et al. (2008) and others in the food desert literature, we find that aggre-
gation error is not an overwhelming problem in identifying underserved areas.

Euclidean versus network topology

Euclidean versus street network comparisons are conducted for parcel-to-parcel relation-
ships (AD), blocks-to-parcels (BE), and blocks-to-blocks (CF). Results are displayed in
Table 3. Long Beach stands out from all other cities—even the other legacy cities of
Milwaukee and Staten Island—for having substantially fewer measures below 0.8. Many
gravity-type measures appear better in Milwaukee and Staten Island than the newer cities of
Irvine and Moreno Valley, which both have numerous correlations dipping below 0.5.

A–D correlations, which measure point-to-point distance using network versus Euclidean
topologies, generally are more closely correlated than B–E or C–F measures. As seen in the
previous section, a general rule appears to be that a 1=2-mile threshold distance can result in
more topological error than a 1-mile threshold, with a 3-mile threshold offering the highest
correlation. The difference is fairly dramatic: for exponential distance decay with b¼ 0.5 in
Moreno Valley, correlations increase from 0.634 to 0.795 to 0.961 as the threshold increases.
A notable exception to this is in the count measures in three legacy cities, which does not
monotonically increase as the threshold distance increases.

While an increasingly steep distance decay parameter had an ambiguous or slightly neg-
ative effect on aggregation error, when comparing network versus Euclidean topologies,
steeper a or b parameters in the gravity-type measures tend to perform better. Using a 1-mile
threshold and a power law in Milwaukee, correlations increase from 0.857 (a¼ 0.5) to 0.901
(a¼ 1) to 0.950 (a¼ 2). However, there are exceptions such as a 3-mile threshold and a
power law in Long Beach, where correlations are highest at a¼ 1 (0.937 vs. 0.922 for the
other two a values).

On the whole, the CF case (block-to-block) shows the lowest correlations between
Euclidean and network distances. For example, for the CF case in Irvine, the correlation
between network and Euclidean measures for the “count of establishments within 1=2-mile”
of a residence is a meaningless r¼ 0.269. Even when using a power law (a¼ 1) and a 1-mile
threshold, the correlation is only 0.546.

Most striking is the difference between the three cities. In most instances in Long Beach,
Euclidean distances can substitute for network distances with a correlation approaching or
above 0.900 and as high as 0.977 for a power law (a¼ 1) and a 1-mile threshold.
Correlations in Moreno Valley and Irvine are much lower and reach a high of 0.962 in
Moreno Valley (AD, exponential b¼ 0.2, 3-mile), but only 0.862 in Irvine (AD, exponential
b¼ 0.5, 3-mile). In particular for power laws, Moreno Valley, 0.5-mile thresholds are par-
ticularly deficient while 1-mile and even some 3-mile thresholds have low correlations in
Irvine. In other words, Euclidean approximations in Moreno Valley are not nearly as defi-
cient when 1 mile is used as the cutoff. This may be due to the regularity of the street grid in
Moreno Valley, which typically consists of 1=2-mile spaced arterial streets. A trip from a
typical home to the nearest intersection of two arterials (where businesses are often found)
requires navigating out of a cul-de-sac through a feeder street before reaching the arterial,
resulting in short trips that are far longer on the street grid than straight line. Once on an
arterial road, there is less difference between Euclidean and street network distance measure-
ments, and thus this problem subsides. Irvine’s correlations are typically lower than Moreno
Valley’s and do not exhibit as much differentiation based on the threshold. This could reflect
the more curvilinear nature of Irvine’s arterial roads—a feature of its history of master
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planning and hillier topography. These two cities do have the lowest population densities of
the five cities analyzed (see Table 1) and likely have larger census blocks in terms of land
area. In addition, the road network density and street intersection density are both higher in
Long Beach than the other legacy cities of Milwaukee and Staten Island. In fact, most back
alleys in the city have street names and some addresses. We suspect this urban morpholog-
ical idiosyncrasy may account for far higher Euclidean-network correlations there.

Finally, while a number of count and exponential decay measures are poorly approxi-
mated by Euclidean distance in Milwaukee and Staten Island, most power law measures in
these places have correlations above 0.8—even measures that performed poorly in Moreno
Valley and Irvine. While we suspected exponential functions may perform better due to non-
infinity values at zero distance, they show lower correlations than a power law in these cities.

Joint effects

Joint effects, the AE and AF cases in Figure 1, are shown in Table 4. Planners are increas-
ingly called upon to integrate and manipulate newer, bigger urban data but they may not
have advanced GIS expertise or substantial computing power. Relationship AE is one such

Table 4. Correlations considering joint effects.

City Long Beach Irvine Moreno Valley Milwaukee Staten Island

Analysis (see Figure 1)

Measurement A–E A–F A–E A–F A–E A–F A–E A–F A–E A–F

Distance to nearest 0.954 0.939 0.875 0.755 0.944 0.897 0.978 0.800 0.948 0.689

Count within 1/2-mile 0.948 0.947 0.608 0.558 0.706 0.653 0.810 0.832 0.717 0.673

Count within 1 mile 0.977 0.977 0.562 0.573 0.813 0.799 0.725 0.717 0.686 0.630

Count within 3 miles 0.915 0.923 0.819 0.786 0.943 0.931 0.613 0.615 0.768 0.744

Power (a¼ 0.5), 1/2-mile 0.949 0.937 0.562 0.446 0.768 0.619 0.834 0.824 0.695 0.595

Power (a¼ 0.5), 1-mile 0.966 0.963 0.599 0.590 0.857 0.833 0.865 0.856 0.766 0.640

Power (a¼ 0.5), 3-mile 0.954 0.975 0.810 0.792 0.962 0.960 0.953 0.933 0.834 0.802

Power (a¼ 1), 1/2-mile 0.957 0.937 0.576 0.449 0.775 0.620 0.873 0.843 0.773 0.645

Power (a¼ 1), 1-mile 0.971 0.961 0.672 0.622 0.879 0.840 0.913 0.893 0.838 0.708

Power (a¼ 1), 3-mile 0.977 0.978 0.836 0.803 0.929 0.923 0.983 0.954 0.837 0.792

Power (a¼ 2), 1/2-mile 0.960 0.926 0.598 0.461 0.781 0.620 0.924 0.845 0.862 0.690

Power (a¼ 2), 1-mile 0.970 0.942 0.762 0.663 0.906 0.842 0.957 0.892 0.934 0.763

Power (a¼ 2), 3-mile 0.975 0.951 0.828 0.745 0.791 0.779 0.983 0.917 0.943 0.834

Exponential (b¼ 0.2),

1/2-mile

0.946 0.937 0.560 0.450 0.768 0.621 0.799 0.812 0.624 0.547

Exponential (b¼ 0.2),

1-mile

0.959 0.959 0.571 0.584 0.854 0.841 0.816 0.823 0.687 0.565

Exponential (b¼ 0.2),

3-mile

0.941 0.970 0.789 0.764 0.967 0.966 0.869 0.871 0.838 0.818

Exponential (b¼ 0.5),

1/2-mile

0.946 0.937 0.560 0.450 0.768 0.621 0.804 0.815 0.631 0.554

Exponential (b¼ 0.5),

1-mile

0.961 0.960 0.573 0.584 0.850 0.836 0.830 0.836 0.707 0.586

Exponential (b¼ 0.5),

3-mile

0.967 0.982 0.868 0.852 0.964 0.961 0.947 0.943 0.824 0.814

Table shows correlations between measures A–E and A–F for joint effects. Pearson’s r is used for distances and counts,

and Spearman’s rho is used for gravity-based measures. Values below 0.8 are in boldface.
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instance for a planner interested in measuring the distance from census blocks to a set of
points, e.g., a single business type. Relationship AF may be encountered in multi-city
research when distance to a neighborhood service is being used as a covariate explaining
some socioeconomic outcome and destinations are represented zonally.

Overall patterns look similar to previous analyses, with substantial differences across
cities. No correlations in Long Beach are below 0.9, while only a select few correlations
in Milwaukee are below 0.8—mostly count measures. Every measure using a 1=2-mile thresh-
old in Moreno Valley has a correlation below 0.8 while in Irvine the only measures above 0.8
are distance-to-nearest and 3-mile thresholds. Staten Island exhibits a number of low cor-
relations, particularly the A–F measures which compare the network gold standard against
the Euclidean measure using zonal origins and destinations. A peculiarity emerges in that
some A–F measures are better than measures in Table 3 which compare Euclidean versus
network distance. For example, the count of establishments within a 1=2-mile threshold is less
deficient here (0.755) than in Table 3 (0.269–0.559), suggesting that a component of the

Table 5. Abundance and clustering in Long Beach.

Establishment type Count NNI

Home products retailing 4415 0.120

Full-service restaurants 1275 0.324

Auto services 849 0.446

Specialty retailing 837 0.463

Healthcare provider offices 815 0.331

Personal financial 669 0.362

Social service organizations 655 0.490

Hospitals 483 0.607

Apparel retailing 443 0.440

Religious organizations 439 0.593

Elementary and secondary schools 314 0.571

Other personal services 312 0.576

Repair services 311 0.627

Personal products retailing 298 0.632

Groceries 268 0.635

General merchandise retailing 267 0.645

Specialty food 247 0.582

Limited-service food and beverage 183 0.763

Medical laboratories 180 0.644

Child care services 155 0.709

Deposit-taking institutions 152 0.494

Beer, wine, and liquor stores 151 0.859

Drug stores 150 0.587

Gas stations 149 0.772

Recreational facilities and instruction 145 0.683

Drinking places (alcoholic beverages) 93 0.722

Hair care services 92 0.809

Movie theaters 69 0.643

Laundry 68 0.552

Convenience stores 63 0.909

Other learning 11 1.230

Note: NNI refers to nearest neighbor index. Counts include the city boundary plus a 1-mile

(Euclidean) buffer to capture establishments accessible to residents living near the city limits.
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high error involving B and C measurements may be network-based, consistent with

Van Eggermond and Erath (2015).
The distance to nearest measure does not appear to suffer from as much “joint” error as

the count or gravity approaches, particularly in the A–E case, where correlations for all

cities are at least 0.875. Staten Island’s A–F correlation is far lower (0.689) indicating that

zonal origins and destinations may be problematic there; however, we can fairly confidently

state across a variety of urban morphologies that sticking with minimum distance likely

results in lower errors when A–E approximation is necessary.

Abundance and clustering

Our final analysis tests whether the level of abundance or clustering of establishments

impacts the levels of error when measuring accessibility to them. This analysis only inves-

tigates one city—Long Beach—and uses a power (a¼ 1) and a 1-mile threshold since this

Figure 2. Scatterplots of abundance, clustering, and error in Long Beach.
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yielded some of the most consistently high correlations earlier. Abundance is measured as
the count of each type of establishment in each city, while the NNI measures its level of
clustering. Table 5 shows the count and NNI for 31 establishment types in Long Beach.

We analyzed relationships AB, AC, DE, and DF—all four aggregation error cases. Plots
were created with the level of correlation on the vertical axis and either abundance or NNI
on the horizontal axis (Figure 2). Only four had an R-squared over 0.10. DF abundance, AC
abundance, and DE abundance show a negative slope, suggesting that measurement error is
higher when there are more destinations in a city. However, these three plots have a far
outlier in the highly abundant home products retailing category, removal of which would
weaken the relationship. In contrast, the nearest neighbor index plot for relationship D–E
shows a positive slope, suggesting that more clustering leads to higher correlation. However,
this is only weakly significant (p¼ 0.056) and is not present using network distances.

This could provide some weak evidence that measuring accessibility to more abundant
destinations may increase aggregation error and measuring accessibility to more clustered
destinations may decrease aggregation error. However, these relationships are weak and
further research either across more cities or more measures is merited.

Discussion and conclusions

The evolving city data landscape provides many new opportunities for planners, practi-
tioners, and researchers. This paper illustrates an integrative approach combining GIS
and urban theory using two sources of individual level data: residential land parcels and
business establishments. The goal is to inform social science research that involves a com-
ponent of urban proximity in understanding outcomes, in addition to improving the ability
of planners and practitioners to leverage these data sources in order to better understand
their cities and improve public service delivery—even without advanced computing resour-
ces. In particular, these data sources allow for a “gold standard” of proximity measurement
against which alternatives can be evaluated. Most prior research on proximity has focused
on a single type of destination—often grocery stores or public services—and has aggregated
at least origins or destinations to polygon areas.

First, while this investigation covers only five cities and does not simulate all parameter
values, results hint at possible best practices. Aggregation error has the potential to be
problematic but results suggest it might be mitigated by carefully choosing an accessibility
measure. When only origins are measured zonally, using a shorter threshold distance such as
1=2-mile should be avoided especially with network distances—consistent with Van
Eggermond and Erath (2015). A zonal representation of both origins (homes) and destina-
tions (businesses) can be more problematic and even impact the distance-to-nearest measure
in legacy cities, whose measurement errors tended to be lower. If origins, destinations, or
both are to be aggregated, a steeper distance decay parameter using either a power or
exponential function typically increases error: a¼ 0.5 or b¼ 0.2 generally performed
better when compared to the “gold standard” but there are exceptions. In contrast, a steeper
distance decay parameter such as a¼ 2 or b¼ 0.5 typically performs better when a research-
er is restricted to using Euclidean distance measures. A narrow, 1=2-mile threshold can result
in more topologically-induced error while a 3-mile threshold performed best; however,
3 miles may be too far a threshold when investigating walkability. When zonal origins
(but not destinations) are used in conjunction with a Euclidean topology, a “distance to
nearest” measure appears fairly robust. The selection of these well-trodden decay parame-
ters and threshold distances for investigation provides an intuitive comparison for planners
and researchers; however, a known shortcoming is that the entire parameter space is not
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simulated. Such an approach might shed more light on idiosyncrasies or non-monotonic

changes and is one we recommend for future research whose goal is to calibrate a travel or

accessibility model.
Second, while cities were selected for this study based on qualitative differences, results

varied more than expected. A set of five cities does not provide a statistically robust sample;

however, these differences suggest that it would be challenging to confidently substitute

measurement strategies across cities: a distribution of values of “the proximity to a grocery,”

for example, cannot simply be compared between one city and another. Some guidance

might be had by considering urban morphology and development trajectory. The older,

“legacy” cities of Long Beach, Milwaukee, and the New York borough of Staten Island

performed consistently better on most measures and suffered from far less aggregation error

than newly built Irvine and Moreno Valley. Moreno Valley’s robust performance using

1-mile rather than 0.5-mile measures makes sense in light of its “cul-de-sacs within
1=2-mile arterials” morphology, while Irvine’s hilly topography and curvilinear roads make

measurement of proximity more challenging. Long Beach performed strongly on most

measures, likely a result of its especially high street intersection density. Myriad additional

considerations—including controlling for city-level differences—are outside the scope of this

work; however, a critical understanding of the nuances of the urban landscape under inves-

tigation appears to be an important component of accurate measurement. A promising area

of future research might be to harmonize parcel-level land-use data from a statistically

robust, random sample of cities or regions. Alternatively, sensor-based data such as

Google StreetView could be used to identify urban features in the same manner across all

cities. Nonetheless, this study’s results caution that not every intraurban landscape feature

can be codified, while many practical policy applications are in a single region.
Finally, this study provides some limited evidence to suggest that more abundant or less

clustered destinations could be subject to more aggregation error. Despite the high-

resolution of the data, residential and business location decisions remain idiosyncratic

and these relationships are fairly weak and inconsistent. It is possible that a more systematic

simulation or machine-learning approach that pools measurement strategies or synthetically

distributes establishments might be able to establish a more generalizable rule, while con-

solidation of urban parcel data through a common platform similar to the General Transit

Feed Specification (GTFS) system for standardizing transit data (Hadas, 2013) could

increase the applicability of these conclusions to other US and international cities.

However, our results stress that while big data can offer increasingly robust, individual-

level descriptive statistics involving accessibility and other topics, not every intraurban land-

scape feature can be codified and many policy applications are regionally-specific

nonetheless.
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