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A B S T R A C T

The current study introduces the flexible approach of mixture components to model the spatiotemporal inter-
action for ranking of hazardous sites and compares the model performance with the conventional methods. In
case of predictive accuracy based on in-sample errors (posterior deviance), the Mixture-5 demonstrated supe-
rior performance in majority of the cases, indicating the advantage of mixture approach to accurately predict
crash counts. LPML (log pseudo marginal likelihood) was also calculated as a cross-validation measure based on
out-of-sample errors and this criterion also established the dominance of Mixture-5, further reinforcing the supe-
riority of the mixture approach from different perspectives.The site ranking evaluation results demonstrated the
advantages of adopting the mixture approach. In terms of total rank difference (TRD) results, there were several
discrepancies between the two approaches, suggesting that two approaches designate unsafe sites differently. An-
other site ranking criterion, site consistency test (SCT), was employed to explore the difference in identification
of unsafe sites based on two datasets: estimated crash count (traditional) and the spatial variability across time.
The advantage of mixture models to act as a complimentary approach for site ranking was revealed by the spatial
variability SCT results. The method consistency test (MCT) results also indicate the advantages of mixture models
over the Base one. These findings suggested that mixture approach may prove helpful in the network screening
step of safety management process to identify sites which may turn unsafe in the future and escape the detection
from traditional methods.

1. Introduction

The detection of high-risk sites forms the core of overall safety man-
agement process. These sites are commonly referred to as hotspots, sites
with promise, or black-spots, and the procedure of network screening
is adopted for their identification (Hauer et al., 2004; Cheng and
Washington, 2005; Huang et al., 2009). Site ranking is essential to
realize the goal of safer traffic environment as it allows efficiency in re-
source allocation for implementing safety countermeasures to mitigate
crashes at different spatial levels of road network.

In the past decades, various site ranking methods have been adopted
by the transportation safety agencies such as crash frequency method
(Deacon et al., 1975), crash rate method (Norden et al., 1956),
rate quality control method (Stokes and Mutabazi, 1996), and so
on. However, such methods were limited in handling the diverse issues
pertaining to crash data such as regression-to-the-mean bias (Hauer,
1997), small sample size and mean of crash fre

quency (Miaou and Lord, 2003), and the unobserved heterogeneity,
which is the tendency to ignore the “uncertainty” of associations of co-
variates and underlying crash risk (Lord and Mannering, 2010).

Recent studies focused site ranking have employed the statistical ad-
vancements in the Markov chain Monte Carlo (MCMC) technique to de-
velop crash prediction models using the Full Bayesian (FB) approach.
This method allows the flexibility to incorporate complex space–time
and site-specific heterogeneities by means of random-effects and random
parameters to address the unobserved heterogeneity inherent to crash
data (Huang et al., 2009; Tunaru, 2002; Miaou et al., 2003; Park
and Lord, 2007; Lan et al., 2009; Persaud et al., 2010; Wang et
al., 2011; Sacchi et al., 2015; Cheng et al., 2017). The ignorance
of the unobserved heterogeneity in crash prediction models may lead to
serious implications such as biased parameter estimates, erroneous in-
ferences, and inaccurate crash predictions (Mannering et al., 2016).
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To mitigate the problems resulting from ignorance of unobserved
heterogeneity, some studies utilized the correlation between neighbor-
ing roadway entities such as intersections (Wang and Abdel-Aty,
2006; Cheng et al., 2017), segments (Aguero-Valverde and Jova-
nis, 2008), corridors (Abdel-Aty and Wang, 2006), TAZs (Traffic
Analysis Zone) (Xu and Huang, 2015), county (Miaou et al., 2003;
Gill et al., 2017) and so on. These studies observed that the inclusion
of spatial random effects improved the model fit and precision due to the
capability to “borrow information” and “pool strength” from the neigh-
boring road entities (Aguero-Valverde and Jovanis, 2006). Similar
advantages associated with model performance were observed by many
studies which employed different temporal treatments to address the se-
rial correlations within crash data across a time period (Andrey and
Yagar, 1993; El-Basyouny et al., 2014; Mannering, 2018; Jiang et
al., 2014).

Moreover, some studies observed that crash data tend to be clus-
tered both spatially and temporally since the site-specific effects may
remain constant over time or fluctuate periodically (Huang et al.,
2009; Aguero-Valverde and Jovanis, 2006; Aguero-Valverde et
al., 2016). Hence, both space and time effects are important for con-
sideration for development of crash prediction models). For the pur-
poses of site ranking from different perspectives, many recent studies
adopted the spatial and temporal correlation structures to account for
unobserved heterogeneity and demonstrated their advantage at superior
performance for site ranking (Cheng et al., 2017; Bernardinelli et
al., 1995).

Although the aforementioned studies incorporated the spatial and
temporal effects, they ignored the interaction of space and time by as-
suming the impact of time to be constant over space. However, more
precise model estimates could be generated by adopting a flexible ap-
proach which accommodates the variations of time-trend across space
(Richardson et al., 2006). The recent macro level HSID study by Dong
et al. (Dong et al., 2016) addressed this issue by employing an au-
toregressive lag-1 dependence for space-time interaction. This study ob-
served that the proposed model, compared to the models without corre-
lations structures and isolated space and time effects, was significantly
superior at identification of high risk sites. The new approach also of-
fered the advantage of monitoring the evolvement of crash risk of sites
over time.

The above-discussed spatiotemporal models employed in safety liter-
ature have attempted to cover the space-time profile of underlying crash
risk of sites. However, they are based on the assumption that all the
sites under consideration follow a global space-time pattern. This lim-
iting assumption restricts the identification of sites which show larger
fluctuations with respect to expected space-time pattern. The larger fluc-
tuations may serve as an indication of future safety concerns but the
prevailing space-time models in network screening may not capture the
sites experiencing low crash frequency but large variability. Along with
the traditional methodology which screens the high-risk sites based on
global space-time pattern, a complementary proactive approach should
also be explored which highlights the ones with site-specific variabil-
ity. For example, there is a general decline in economic activity dur-
ing a recession which then leads to overall less driving and crashes.
However, to reduce household spending, some families might switch to
other transportation modes such as active transportation from usual ve-
hicle-driving. Such transportation modal shift may increase the human
activities near the public transportation stations in certain TAZs yielding
more pedestrian or bicyclist involved collisions, a phenomenon against
the global space-time pattern within this time interval.

To this end, the current study borrows a spatiotemporal model with
flexible mixture components from an epidemiologic study (Abellan et
al., 2008) which documented many benefits of this approach for de-
tection of sites with unstable pattern of diseases. The mixture compo-
nent model allows the flexibility to capture the predictable (stable) pat

terns of overall spatial and temporal risk surface and simultaneously
capture the sites which show greater variability to depart from the sta-
ble pattern of the space-time interaction. This framework explores the
full space-time profile of the underlying structure of crash risks by ac-
counting for the unobserved heterogeneity by means of site-specific
space-time interactions. This exploration allows the establishment of a
spatial crash risk pattern that sustains over a period of time as well as
detection of sites which show unusual fluctuation in crash risk over this
time. The stable and unstable patterns may be interpreted based on the
crash risk of specific sites. Stable pattern represents the recurrent ex-
ternal factors which influence crash risk such as higher traffic volume
during peak hours. The unstable pattern may address the unobserved
heterogeneity by incorporating the non-recurrent events which heighten
the crash risk such as changes in enforcement level or weather condi-
tions. To the best knowledge of the authors, the current study is the first
to introduce this approach of mixture components in safety literature to
provide a new perspective for site ranking. It is expected that this ap-
proach may be coupled with the conventional methods as it would allow
distinction of sites which exhibit deteriorating expected safety perfor-
mance so that precautionary measures may be undertaken to mitigate
crashes.

Apart from proposing the new approach for site ranking, this study
also makes several other contributions by performing an empirical eval-
uation of the proposed method. First, the study by Abellan et al.
(2008) employed the probabilistic approach with different priors for
distinction of sites into two groups: unstable and stable. The current
study adopts the similar approach by developing the first group of mod-
els which separates the sites into these two levels, and also a second
group with five levels which provides a subtler classification of unstable
sites. Second, a Base model (Model 1) without mixture components is
also developed to represent the existing safety research which accommo-
dates independent spatial and temporal random effects without interac-
tion. This model serves for comparison with the proposed mixture com-
ponent models with space-time interaction (Model 2 is Mixture-2 and
Model 3 is Mixture-5). Third, the safety literature demonstrated the ad-
vantages associated with different temporal treatments. This study em-
ployed linear, quadratic, and autoregressive with lag-1 trend to repre-
sent different temporal treatments for development of spatiotemporal
models. Fourth, the model performance based on predictive accuracy is
assessed by employing different evaluation criteria which are based on
direct in-sample errors as well as direct and indirect out-of-sample er-
rors. Finally, this study adopts two cut-off levels (top 5%, and 10% sites)
to replicate the different goals of safety agencies for assessment of mod-
els based on site ranking performance and employed three criteria which
assess model performance from different perspectives.

2. Methodology

The area of focus was the aggregated vehicular crashes at the 203
TAZs in the City of Irvine, California, during a ten-year period
(2003–2012). The crash data were collected from SWITRS (California
Statewide Integrated Traffic Records System). The relatively long period
selected has the benefits of better understanding the temporal trends
and having more data allowing data-splitting for the purpose of model
evaluation. However, it is also important to note that, given the 10-year
span of data containing a great economic recession, it is likely that there
would be temporal stability initially followed by a highly unstable pe-
riod. For instance, Malyshkina and Mannering (2008) revealed the
evidence of temporal stability in injury severities in the mid-2000s even
in the presence of speed limit increases. But work that was performed in
the great recession years later has found significant temporal instability.
More details about temporal instability can be found in the subsection
of Mixture with Two Levels.
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The Full Bayesian (FB) framework was employed to estimate the
crash frequency of vehicles at the TAZ level. Under the FB approach,
the Poisson lognormal model is adopted to account for the overdisper-
sion usually associated with crash data and better handle the low sample
mean and small sample size due to the heavier tails associated with log-
normal distribution (Lord and Miranda-Moreno, 2008). This model
assumes that crash count (yi) at a given TAZ i, obeys Poisson distribu-
tion, while the corresponding observation specific error term εi follows
a normal distribution:

(1)

Where λi is the expected Poisson count for location i, and can be ex-
pressed as follows:

(2)

Where is the intercept and εi is the independent random effect which
captures the extra-Poisson heterogeneity among locations. εi can be as-
sumed with the following noninformative Normal priors:

(3)

Where τ2 is the variance of the normal distribution for εi. The inverse of
τ2 is called precision and it can be modeled using the following gamma
prior with prior mean equal to one and its prior variance large (equal to
one thousand), representing high uncertainty or prior ignorance:

(4)

The model presented in Eq. (2) serves as the basic formulation for
crash prediction in most safety studies. The current study also adopts
this model as the basis for development of spatiotemporal models.

2.1. Three groups of models

This section first introduces the Base model specification, with three
different temporal treatments, which serves to represent the space-time
interactions by conventional traffic safety studies. Discussions are pro-
vided regarding the limitations associated with the traditional approach
(Base). The next part of this section introduces the formulation of mix-
ture component models for capturing the space-time interaction. The
mixture models for two and five levels were developed in the current
study and the rationale of these two approaches is discussed. It should
be noted that the three temporal treatments associated with Base models
were also utilized for the mixture models.

2.2. Base

This study was focused on exploring the network screening capabili-
ties associated with mixture models and the Base group was utilized for
reference. This group represents the approach utilized by safety stud-
ies for accommodating the space-time interactions. The basic formula-
tion adopted before incorporating the temporal treatment is obtained
by modifying the Eq. (2) to account for the spatial correlation among
neighboring TAZs:

(5)

Where ui is the spatially structured random effect which follows the CAR
(conditional autoregressive) formulation to incorporate the spatial cor-
relation among crashes occurring at neighboring TAZs. The CAR distrib-
ution allows correlation between the random effects of neighboring geo-
graphic units, borrowing strength and creating smooth spatial patterns.

(6)

Where is the proximity weight matrix and is the precision para-
meter in the CAR prior. Similar to the past studies (Xu and Huang,
2015; Gill et al., 2017; Aguero-Valverde and Jovanis, 2010), the
current study adopts a distance-based weight structure to account for the
spatial correlation, where the weight between two TAZs is calculated as
the inverse of distance between their centroids. The distance matrix for
TAZ centroids was provided by SCAG (Southern California Association
of Governments).

To introduce the three temporal treatments and the space-time inter-
action term, Eq. (5) is modified as follows:

(7)

Where is the temporal treatment, and is the space-time in-
teraction parameter. can take different forms such as linear
(Aguero-Valverde and Jovanis, 2006 ) and time-varying spatial cor-
relation (Lawson et al., 2003). This study developed three models
based on varying complexity of temporal treatments.

2.2.1. Model 1: linear time trend
In this model, a linear trend is introduced where time is regarded as

a potential influential covariate and the model estimates the coefficient
for the trend. Eq. (7) assumes the following form:

(8)

Where is the scalar parameter for linear yearly trend T (T=1–5 in
the current study). It is expected that the passage of time will impact the
crash risk on the TAZs which would be captured by the model.

2.2.2. Model 2: quadratic time trend
In this model, a non-linear impact of time is considered. Eq. (7) takes

the following form:

(9)

Where is the coefficient for the quadratic trend term. It is expected
that this model will allow more subtle approach compared to the linear
trend as it allows flexibility to fit the crash data by virtue of its addi-
tional quadratic trend.

2.2.3. Model 3: autoregressive-1 (AR-1)
This model established a temporal dependency from prior year by

specifying the distribution of as a lag-1 dependence in errors, where
lag-1 means that the time is varying yearly (Miaou and Song, 2005;
Gill et al., 2018; Mannering, 2018). Under this model, Eq. (7) as-
sumes the following form:

(10)

The weighted sum is fixed and the random terms change at every
time step following the same distribution, which means this model is ho-
moscedastic. The distributions are given by:

(11)

(12)

Where is the autocorrelation coefficient with the range of 0 < < 1.
This model addresses the potential correlation between successive time
periods and is expected to deliver a more precise estimation of the model
parameters.
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2.3. Mixture with two levels

The above discussed Base models represent the traditional approach
of network screening which is based on the estimated crash frequency.
For example, the 203 TAZs would be arranged in the decreasing order of
crash risk (estimated crash frequency) and a predefined threshold (top
5% or 10%) may be utilized to identify the most unsafe sites for fur-
ther investigation or safety countermeasure implementation. Beyond the
practical implications, the technical aspect of this approach assumes a
global space-time trend to be accounted for by the corresponding terms
while the unobserved heterogeneity is expected to be captured by the
error term which follows normal distribution with a constant variance.
However, this approach is limiting in exploring the complete space-time
profile of crash risk as the variability associated with each site with re-
spect to time is not accounted for. Rather, all sites are assumed to be
subjected to a constant global spatiotemporal trend. This limitation may
be addressed by using the mixture components which have the capabil-
ity to incorporate the site-specific variability associated with passage of
time. This would immensely benefit the safety research by complement-
ing the traditional network screening process as the sites showing the
signs of instability (with respect to crash risk over time) would be cap-
tured.

The presence of temporal instability for crash risk has been acknowl-
edged by many studies (refer to Mannering (2018) for comprehensive
review of impact of temporal instability in different fields) and differ-
ent approaches have been employed in an attempt to capture it. The
use of random effects and temporal treatments employed in the cur-
rent study represents the vast majority of literature dealing with tem-
poral instability. Such approaches, though, are based on the assumption
that the temporal impact remain constant over all sites under consid-
eration. Also, the impact of explanatory factors is also assumed to be
consistent across all sites. To handle this issue, some studies employed
the random parameter approach which operated on the assumption that
there exist statistical differences for the impact of an explanatory factors
across sites for a given time period. Still this approach was restricted
in quantifying the varying impact of factors across different time peri-
ods for a given site. Adopting the philosophy of random parameter ap-
proach, some studies employed time-varying coefficients which allowed
the flexibility to accommodate the variations of explanatory variables
across time periods. However, this approach still assumed that global
space-time trend which impacts the crash risk of all sites. In other words,
the variability in the crash risk of each site was not captured for differ-
ent time periods. The approach of mixture components allows the flexi-
bility to distinguish between the stable and unstable underlying risk pat-
tern, where the stable (or predictable) patterns are represented by the
overall time trend ( ) and spatial crash risk ( ), and unstable (or un-
predictable) patterns are the atypical departures from the stable pattern
(Cheng et al., 2018a).

The methodology of mixture component for space-time interaction
was introduced by Abellan et al. (2008) in an attempt to develop
a framework which has the flexibility to “uncover the full space-time
profile of risks”. The specific concerned study employed a 2-component
mixture which combines variabilities of different levels, where the lev-
els distinguish the unstable and stable pattern based on variability of
space-time interaction. The Mixture-2 model specification is obtained by
modifying the space-time interaction term ( ) from Eq. (7) as follows:

(13)

The prior for p is uniform on [0, 1] through a Dirichlet distribu-
tion. The flexibility of the approach if afforded by the accommodation
of discreet and continuous space-time variations in crash data by means

of the varied prior distribution. The discreet variations (i.e. the second
component in the above equation) represent the atypical patterns in the
space-time profile of the crash site which deviates from the stable global
pattern. The atypical behavior will be demonstrated by large fluctua-
tions which indicate the higher risk relative to other sites. Since the first
component captures the noise, representing stable global space-time pat-
tern, and the second component captures the departure from that con-
tinuous pattern, the half-normal hyper-prior distributions were assigned
for the standard deviations , (k = 1, 2), which reflect that (corre-
sponding to “stable” risk pattern) has to be small to effect shrinkage so
as to capture the noise, whereas the prior for (corresponding to “un-
stable” risk pattern) allows the flexibility to capture large fluctuations
with a much wider range. The different ranges of variance are shown in
the following equations:

(14)

(15)

Comparing Eqs. (14) and (15), it is known that is part of . Such
formulation not only ensures that is greater , but also prevents the
label switching issues Abellan et al. (2008). Additionally, the indica-
tor value (ind) for each location can be expressed as follows:

(16)

For the mixture with 2 levels, it is known that range from 1 to 2,
the larger the value, the larger probability of the greater space-time vari-
ability for the location i of period t tends to be. Therefore, in addition to
rely on (estimated crash counts) for network screening purpose, we
can also utilize the value for site-ranking need, which tries to flag
out locations with unstable space-time pattern.

2.4. Mixture with five Levels

The above-mentioned Mixture with Two Levels model roughly divide
the spatiotemporal variability into two levels, stable and unstable. In
essence, the division can be done for any levels based on the researcher
needs. For illustration purpose, the subsection focuses on a subtler clas-
sification of 5-component mixture. Compared with the Mixture-2 model,
the Mixtrure-5 specification is different with more components of spa-
tiotemporal variability:

(17)

Similarly, the different ranges of variance are expressed as follows:

(18)

(19)

(20)

(21)

(22)

Likewise, the indicator value (ind) for each location can be expressed
as follows:

(23)
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Again, the larger the ind value, the more unstable of spatiotemporal
pattern for the specific location. All denotations in Eqs. (17)–(23) are
the same as those in Eqs. (13)–(16).

2.5. Model evaluation criteria

2.5.1. DIC
This study used DIC (Deviance Information Criterion) to assess the

complexity and goodness of fit of the models. DIC is a hierarchical mod-
eling generalization of the AIC (Akaike Information Criterion) which
was proposed by Spiegelhalter et al. (2003) to account for model fit
and complexity. Specifically, DIC is defined as:

(24)

Where, is the deviance evaluated at the posterior means of esti-
mated unknowns ( ), and posterior mean deviance can be taken as a
Bayesian measure of fit or “adequacy”. denotes the effective number
of parameters in a model, as the difference between and , i.e.,
mean deviance minus the deviance of the means.

2.5.2. LPML
This cross-validation approach is implemented by estimating the

conditional predictive ordinate (CPO) using the CV-1 (leave-one-out)
technique (Gelfand, 1996) which removed the selection bias by em-
ploying a continuous approach of selecting all data points, except one,
for model development and the left out data point to verify the predic-
tion accuracy of the calibrated model. Under the MCMC framework, the
estimate of CPO for each observation i can be calculated as:

(25)

Where Yi is the ith observation (i=1, 2, 3,. . . , n) for all 203 TAZs
and β is the vector of estimated model parameters. This harmonic mean
of density (CPO) may be extended to calculate the goodness-of-fit of
models by computing the product of CPOs over all observations, which
is known as the pseudo marginal likelihood. For computational con-
venience, the log pseudo marginal likelihoods (LPML) is calculated
(Cheng et al., 2018b; Heydari et al., 2016):

(26)

The larger LPML value indicates a superior performance associated
with the candidate model.

2.6. Site ranking criteria

A natural extension of application of the previously mentioned mod-
els is to rank safety performance of sites of interest (Aguero-Valverde
and Jovanis, 2009; Geedipally and Lord, 2010; Washington et al.,
2014). Due to the importance of this task for enhancement of safety
of roadway network, many studies have been dedicated to assessing
the performance of hotspot detection methodologies (Montella, 2010;
Jiang et al., 2014). Three popular evaluation tests were selected which
assess the ranking methodologies from different perspectives.

2.6.1. Site consistency test
This test measures the ability of a model to consistently identify

a roadway entity as an unsafe site over subsequent observations. It is
based on the premise that an unsafe site would remain in that state
if no safety treatment delivered. The larger SCT score indicates supe

rior site ranking performance of a model. The expression of SCT is
shown as follows (Cheng and Washington, 2008):

(27)

where is the crash statistic in time period i+1
for a site that is ranked k in time period i as identified by the model j.

2.6.2. Method consistency test
This test is also based on the assumption that an unsafe site remains

unsafe for subsequent observations in time provided that no safety treat-
ment is applied. MCT measures the number of same hotspots identified
by a model for two different observations of time. By definition, MCT is
expressed as (Cheng and Washington, 2008):

(28)

2.6.3. Total rank difference test
This test measures the difference in rankings of sites for successive

periods. The smaller value indicates more consistent performance of a
model for ranking the hotspots. The corresponding calculation is shown
as (Cheng and Washington, 2008):

(29)

Where is the rank of site k in time period i identified by the model
j.

3. Results

3.1. Model estimates

The models were developed in the statistical software WinBUGS
(Lunn et al., 2000) to generate MCMC samples for Bayesian posterior
inferences. For the model calibration, two chains of 25,000 iterations
were set up. Convergence was ensured by visual inspection of chains and
observing the desired threshold condition of MC errors to be lower than
5% of the standard deviation of parameters. After ensuring the conver-
gence, first 10,000 samples were discarded as adaptation and burn-in
and rest of the samples were used to draw parameter estimates. For ease
of reference, the models with different temporal correlation would be
denoted by Model # while the models with different levels would be de-
noted as model types.

The posterior model estimates of the coefficients are shown in Table
1. It is important to note that no explanatory variables are shown in
the table as this study intends to compare the impact of temporal trends
and the inclusion of covariates may blur the comparison. The parame-
ter estimates illustrate the robustness of the developed models across
the three types (Base and two Mixture models) based on the closeness
of coefficients. In terms of comparison across temporal trends, the co-
efficients are observed to vary, and it is expected as different tempo-
ral specifications account for different degrees of variability which im-
pact the coefficient values. The intercept is noted to be statistically
significant for all models. However, the inclusion of temporal speci-
fications does not turn up to be significant, which suggests that the
crash data may have underlying temporal correlation to a lesser ex-
tent than expected. The only exception to the non-significant of tem-
poral terms is the linear trend for Before period for Model 1, which
shows a statistically significant negative correlation. The reversal of co-
efficient signs for linear and quadratic trend between Before and Af-
ter periods suggests the possibility of temporal instability (Mannering,
2018). In terms of advantages associated with precision of posterior
estimates, there is no clear trend of superior precision for any tempo

5
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Table 1
Posterior Model Estimates.

Variable Before After

Model
1

Model 2 Model
3

Model 1 Model 2 Model 3

Base 1.032
(0.043)

1.045
(0.072)

0.946
(0.071)

0.922
(0.043)

0.812
(0.075)

0.898
(0.030)

Mixture-2 1.030
(0.042)

1.050
(0.090)

0.944
(0.030)

0.913
(0.048)

0.823
(0.079)

0.894
(0.033)

Mixture-5 1.030
(0.043)

1.040
(0.073)

0.949
(0.053)

0.909
(0.044)

0.815
(0.077)

0.893
(0.067)

Model
1

Model 2 Model
3

Model 1 Model 2 Model 3

Base −0.028
(0.009)

−0.039
(0.050)

NA −0.006
(0.010)

0.086
(0.052)

NA

Mixture-2 −0.028
(0.010)

−0.040
(0.068)

NA −0.005
(0.012)

0.070
(0.058)

NA

Mixture-5 −0.029
(0.010)

−0.037
(0.052)

NA −0.005
(0.011)

0.075
(0.055)

NA

Btsq
Model
1

Model 2 Model
3

Model 1 Model 2 Model 3

Base NA 0.002
(0.008)

NA NA −0.015
(0.008)

NA

Mixture-2 NA 0.002
(0.011)

NA NA −0.012
(0.009)

NA

Mixture-5 NA 0.001
(0.008)

NA NA −0.013
(0.009)

NA

Gamma
Model
1

Model 2 Model
3

Model 1 Model 2 Model 3

Base NA NA 0.525
(0.587)

NA NA 0.321
(0.450)

Mixture-2 NA NA 0.023
(0.573)

NA NA 0.520
(0.494)

Mixture-5 NA NA 0.568
(0.603)

NA NA 0.536
(0.599)

Notes: 1. The bold text represents the variables not statistically significant at 95% confi-
dence level. 2. The numbers in the parentheses represent the associated standard devia-
tion.

ral correlation or model type, as reflected by the standard deviation of
coefficients.

3.2. Predictive accuracy evaluation

This study employed DIC and its components for assessment of good-
ness-of-fit of alternate models. DIC was selected for the model com-
parison as it is a penalized criterion which acts as a trade-off between
model complexity and model fit which are represented by the effec-
tive number of parameters (Pd) and posterior deviance ( ). The Dbar
may be regarded as a measure to indicate model performance based on
in-sample errors and DIC may be regarded as the indirect representa-
tion of model performance based on out-of-sample errors. The results
for DIC and its components are shown in the upper three sections of
Table 2. In case of Dbar, which represents model fit, the model per-
formance across different temporal treatments depicts mixed results.
The AR-1 specification (Model 3) is superior in case of Base model
while the linear trend indicates advantage at model fit for three out of
four cases of superior performance. The model fit across different types
shows that majority of Mixture (5 levels) models are superior, followed
by Mixture (2 levels). This indicates that the flexibility to accommo-
date more levels may lend the advantage to fit the crash data better.
In case of Pd, which represents the effective number of parameters em-
ployed by the model and represents the complexity, the AR-1 specifica

tion (Model 3) is consistently observed to employ the least number
of parameters. This specification accounts for the correlation from one
prior year and seems to be relatively less complex than the addition of
linear or quadratic trend. This may be attributed to the absence of statis-
tical significance for temporal terms in general across most models (refer
to Table 1). For comparison across model types, the Base model con-
sistently demonstrates the least complexity and this result aligns with
the expectations as the mixture models may incorporate higher number
of effective parameters to accommodate multiple levels. In case of DIC,
which represents the overall goodness-of-fit and is the indirect measure
of model performance based on test errors, The AR-1 models are consis-
tently superior to alternative models for both time periods. This superi-
ority may be attributed to the lowest value of Pd observed for AR-1 mod-
els which compensated for the higher posterior deviance in some cases.
For model comparison across types, the Base model record the lowest
DIC which is influenced by their lower values of Pd. The exception to
this trend in the Mixture (5 levels) model employing AR-1 specification
which records the lowest DIC for After period. It is evident from the Pd
values that the superior DIC for this model is also attributed to the low-
est Pd. Overall, the results suggest the significant role of addition of ef-
fective number of parameters (Pd) to govern the overall goodness-of-fit
of models.

This study also adopts the cross-validation approach to compute
the conditional predictive ordinate (CPO) and eventually calculate log
pseudo marginal likelihood (LPML) for comparison of model fit. The
higher value of LPML reflects relatively superior model fit property. The
difference between the LPML values of two concerned models is referred
to as the log pseudo Bayes factor (LPBF), where a LPBF greater than 5
reflects the superiority of the model of interest (Ntzoufras, 2009). As
shown in the last section of Table 2, the AR-1 models are noted to be
superior for four out of six cases for comparison between temporal treat-
ments. This suggests that the superiority of this specification observed in
case of training errors may be transferable to test errors (or out-of-sam-
ple). In terms of model performance across different types, the Mixture
(5 levels) is consistently superior within each temporal treatment. This
significant advantage of Mixture (5 levels) was not evident for other cri-
teria but this observation for LPML suggests that Mixture (5 levels) mod-
els demonstrate the capability to perform superior to other models for a
different crash dataset as LPML essentially represents the model perfor-
mance for out-of-sample errors.

The authors further conducted the ANOVA (analysis of variance) and
Tukey’s HSD (Honest Significant Difference) analysis to check whether
the performance differences between temporal treatments and model
types are statistically significant or not. As shown in Table 3, the model
types based on different levels demonstrate the presence of statistically
significant differences across all three criteria. This corroborates the
findings from Table 2 and suggests that the introduction of different
levels within the models creates a significant performance difference.
However, in case of difference between models based on temporal treat-
ments, only DIC exhibits the presence of statistically significant differ-
ence. This finding suggests that different types of temporal correlations
may not lead to a significant performance difference.

Table 3 depicts the presence of statistically significant differences
between models but fails to identify the models which are different.
To distinguish the superior models, box and whisker plots were de-
veloped which are shown in Fig. 1. The upper portion of the figure
demonstrates the performance difference for different model types. The
superiority of mixture models is evident in case of Dbar and LPML
where the Base model demonstrates significant difference with infe-
rior performance. This finding corroborates the results from Table 3.
However, contrary to the observations from the table, only the model
pair of Mixture (2 levels) and Base depict statistically significant differ-
ence for DIC. In general, the plots substantiate the presence of statisti-
cally significant differences in the model performance of mixtures and
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Table 2
Model Evaluation Results.

Evaluation Criteria Before After

Dbar
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Base 3763.37 3775.28 3756.88 3804.16 3791.6 3746.28
Mixture-2 3691.57 3724.54 3750.09 3682.24 3686.36 3711.37
Mixture-5 3717.94 3722.7 3733.66 3698.72 3687.91 3701.9
PD

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Base 197.916 213.277 20.866 220.72 214.05 206.595
Mixture-2 666.06 800.243 269.783 713.951 679.019 262.835
Mixture-5 359.844 435.609 83.273 496.012 404.131 155.271
DIC

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Base 3961.28 3988.55 3777.75 4024.88 4005.65 3952.87
Mixture-2 4357.63 4524.79 4019.88 4396.19 4365.38 3974.21
Mixture-5 4077.78 4158.31 3816.93 4194.73 4092.05 3857.17
LPML

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Base −1877 −1879 −1869 −1885 −1885 −1869
Mixture-2 −1861 −1864 −1863 −1847 −1848 −1845
Mixture-5 −1855 −1855 −1856 −1842 −1840 −1839

Note: For each criterion, the best model performance across different types (different levels) is highlighted in italics and across different temporal correlations (Model #) is highlighted in
bold.

Table 3
ANOVA and Tukey’s HSD Results.

Criterion Residuals D.F. Sum of Square Mean Square F Pr(>F)

Difference among Base, Mixtrue-2, and Mixture-5
Dbar Groups 2.00 16,328.00 8,164.00 16.75 0.00

Residuals 15.00 7,310.00 487.00
DIC Groups 2.00 334,817.00 167,408.00 6.09 0.01

Residuals 15.00 412,545.00 27,503.00
LPML Groups 2.00 2,861.40 1,430.70 21.56 0.00

Residuals 15.00 995.50 66.40
Difference among three Model 1, 2 and 3
Dbar Types 2.00 158.00 78.90 0.05 0.95

Residuals 15.00 23,480.00 1,565.30
DIC Types 2.00 312,907.00 156,453.00 5.40 0.02

Residuals 15.00 434,454.00 28,964.00
LPML Types 2.00 88.00 44.22 0.18 0.84

Residuals 15.00 3,769.00 251.23

Base model for majority of the cases while the difference between the
two mixture models is ambiguous. The lower portion of Fig. 1 demon-
strates the difference between three temporal models for the evaluation
criteria. The results align with the findings from Table 3 as the pres-
ence of statistically significant difference is only observed in case of DIC
where the AR-1 specification is superior.

3.3. Site ranking evaluation

The previous section evaluated the model performance based on
the predictive accuracy and goodness-of-fit. This study also intended to
compare model performance based on site ranking and explore whether
the superiority at model fit or predictive accuracy also subsequently
leads to advantages at site ranking. The criteria of Total Ranking Dif-
ference (TRD), Site Consistency Test (SCT), and Method Consistency
Test (MCT) are employed for evaluation. It is worth mentioning that
the SCT and MCT are based on the distinction between safe and unsafe
TAZ’s. In practice, the zones are ranked in descending order and with
the top zones being selected for further investigation. The specific num

ber chosen is based on the agency policy or available funding. In the
present research, both top 5% and 10% zones were arbitrarily selected
to represent the hazardous zones with relatively more crashes where the
common results would yield more confidence regarding the ranking per-
formance.

As shown in Table 4, the TRD evaluation is conducted between be-
fore and after Bayesian estimated counts ( and ind values (prob-
ability of space-time variability). It is worth restating that ind values
are only generated by the mixture models and this study intended to
compare the ranking performance based on traditional counts method
and the ind values based on mixture approach. A smaller value of TRD
is desirable as it indicates that there is lesser difference in the ranks
of sites for before and after periods. In other words, assuming that
the underlying crash risk of a site remains constant, a lower TRD sug-
gests that the model is capable to assigning correct risk-based ranks
for before and after periods. As evident from Table 4, there are some
discrepancies among the model performance based on count and ind
approaches. This finding meets the expectation as the ind approach
was perceived to be employed as a complimentary one to the tradi
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Fig. 1. Box and whisker plots for model performance.

Table 4
Site Ranking Results using TRD and Different Crash Datasets.

before- and after- before- and after-

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Base 3358 3360 3438 NA NA NA
Mixture-2 3376 3359 3365 13083 13003 12998
Mixture-5 3361 3376 3500 12210 11903 12724

Notes: 1. For each criterion, the best model performance across different types (different
levels) is highlighted in italics and across different temporal correlations (Model #) is high-
lighted in bold. 2. See Eqs. (8) and (16) for definitions of and .

tional count approach as it may catch the sites which escaped the count
approach. In case of count approach, the linear trend Base model is
the best overall, closely followed Mixture-2 quadratic model and Mix-
ture-5 linear model. Interestingly, the advantage of AR-1 specification
from model fit seems to have limited superiority in terms of site ranking.
In case of ind approach, the quadratic trend depicts overall best TRD
(11,903), followed by linear and AR-1. It is noteworthy to highlight that
all three temporal models for Mixture-5 are superior to Mixture-2, indi-
cating that the flexibility provided by the former approach by introduc-
ing five levels may lead to superior site ranking performance as the sites
may acquire subtler designation based on probability.

Another evaluation criterion for assessment of site ranking perfor-
mance is Site Consistent Test. The lower value of SCT essentially indi-
cates that a model consistently identifies similar sites across different
time periods. The results based on the traditional approach of poste-
rior crash estimates is shown in the upper portion of Table 5. As evi-
dent from the table, all models exhibit exactly the same SCT values (ex-
cept that Mixture-5 performs slightly in the case of Model 1 and 5%).

Table 5
Site Ranking Results using SCT and Different Datasets.

before- and after-

5% 10%

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Base 1189 1189 1189 1855 1855 1855
Mixture-2 1189 1189 1189 1855 1855 1855
Mixture-5 1157 1189 1189 1855 1855 1855
The standard deviation of before- and after-
Base 0.002 0.006 0.017 0.004 0.012 0.032
Mixture-2 0.69 0.5 0.33 1.12 1.01 0.62
Mixture-5 0.48 0.55 0.43 1.14 1.18 0.92

Notes: 5% and 10% refers to the top 5% (10) and 10% (20) unsafe sites, respectively. Bold
text indicates superior performance.
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This suggests that the Base and mixture models with different tempo-
ral trends have equivalent competency at site ranking based on the
Bayesian estimated crash counts. However, this approach is based on
crash counts and offers very limited information regarding the sites
which may exhibit higher crash variability in the future. A proactive ap-
proach may be desirable in some cases to identify the sites which show
smaller risk at present but the variability from the stable space-time pat-
tern may indicate that they are prone to more crashes in the future. Such
approach may be complimentary to the traditional one and a collabo-
rative approach may be developed which also identifies the perceived
high-risk sites. The mixture models offer such possibility as they isolate
the spatial and temporal correlations and the space-time variability may
help identify the sites showing higher probability of crash risk based on
departure from global space-time pattern. The lower portion of Table 5
illustrates the SCT results based on the standard deviation of , which
represents the spatiotemporal variability. In this case, the higher value
of SCT is desirable as it indicates that the model identified such sites
which had lower crash counts in the before period, but the crash risk
increased over time. Such sites should also be included in the process
of crash mitigation as it is a proactive approach which compliments the
traditional one. As depicted by the SCT results, Mixture-5 has higher
standard deviation in five out of six cases. This finding indicates that
Mixture-5 models offer remarkable superiority in the TAZs crash dataset
of this study to identify the sites which may have apparent crash risk,
but the underlying risk may be more evident in future.

The authors also employed the Method Consistency Test to quantify
the number of sites which each model identifies for both before and after
periods. A larger MCT value indicates that the models are able to iden-
tify more sites for each time period. This suggests superior site ranking
performance as the model depicts consistency to select same sites, as-
suming the underlying crash risk remains constant. To restate, 5% sites
represents top 10 unsafe sites while 10% represents top 20 unsafe sites.
As shown in Table 6, the model pair of Mixture-2 and Mixture-5 con-
sistently identify the largest number of common sites across both time
periods. Their consistency is more pronounced for the After period as
both models share 7 out of 10 and 18 out of 20 sites which is signifi-
cantly larger than the MCT with Base model. These findings further cor-
roborate the previous findings to suggest that the difference in the fun-
damental approach between Base and Mixture models leads to varying
site ranking performance, but such differences may be exploited by em-
ploying Mixture models in collaboration with Base model to compliment
the traditional site ranking approach.

The difference in the crash risk based on Bayesian estimated crash
count and ind values may be better illustrated using a heatmap. As
shown in Fig. 2, the four different heatmaps depict the similarities and
differences on assignment of crash risk to sites based on ind values

Table 6
Site Ranking Results based on MCT.

MCT

Before After

Base Mixture-2 Mixture-5 Base Mixture-2 Mixture-5

Base 3 3 3 3
Mixture-2 2 11 1 18
Mixture-5 1 5 1 7

Notes: the number below the main diagonals represents the number of common zones
identified by each pair of models for the case of top 5% zones, while the number above
the main diagonal represents the one for top 10% situations.

for mixture models, Bayesian estimated crash counts for Base model, and
the observed crash count. For illustrative purpose, the heatmaps are de-
veloped based on the best models per the evaluation criterion, LPML,
which is the Model 3 in the After period. The average values of ind (and
other counts) across five years of After period are used for generating
the maps. However, such comparison may also be conducted based on
individual years, or based on the latest year’s data, depending on the ob-
jective of study. As depicted in Fig. 2, Mixture-5 and Mixtire-2 models’
ranking results are relatively similar. On the other hand, theta and count
also seem to be similar in designating the crash risk to sites. This differ-
ence clearly shows that the mixture models deviate from traditional site
ranking, and rightly so, as they offer another perspective by identifying
sites which may tend to have lower crash counts for a given period but
their deviation from rest of the sites based on space-time profile should
be incorporated for site ranking.

4. Conclusions and recommendations

This study compares the mixture models for space-time interaction
with the traditional one in the safety research. The models with the mix-
ture component allow the accommodation of global space-time patterns,
which are referred as “stable”, while also capturing the atypical depar-
tures from the stable pattern which may not be captured by the conven-
tional space-time models in safety research. This study developed two
mixture models, namely Mixture-2 and Mixture-5, where the numerical
values represents the number of levels. The larger the mixture levels, the
subtler categories of the space-time variability. It is important to note
that the 5 levels were selected merely for illustration purpose. Techni-
cally, any levels could be used based on the research need. A Base model
was also developed to accommodate the space and time terms without
mixture. Following conclusions were drawn from the model comparison
results:

1 The posterior parameter estimates conveyed the robustness of the de-
veloped models across the three types (Base and two Mixture mod-
els) based on the closeness of coefficients. Conversely, the coefficients
were noted to vary in terms of temporal treatments which suggested
the presence of discrepancy regarding the temporal impact of inde-
pendent terms on crash risk. Overall, the model estimates results in-
dicated the presence of temporal instability which may be further ex-
plored by incorporating diverse explanatory factors. The inclusion of
different temporal treatments to account for the temporal correlation
and instability is vital to draw more informed inferences by generat-
ing relatively accurate posterior estimates.

2 In case of predictive accuracy based on in-sample errors (Dbar), no
clear advantage of a specific temporal treatment was observed. How-
ever, in comparison between model types, the Mixture-5 demon-
strated superior performance in majority of the cases, followed by
Mixture-2. This finding quantified the advantage of mixture approach
to accurately predict crashes, as assessed by in-sample errors.

3 DIC values for alternative models were also recorded as DIC repre-
sents the overall goodness-of-fit and is the indirect measure of model
performance based on test errors. In terms of temporal treatments,
AR-1 specification demonstrated superior performance. For model
comparison across types, the Base model recorded the lowest DIC.
Overall, it was observed that DIC values were largely governed by the
model complexity which penalizes the models for addition of effective
parameters.

4 To reflect the predictive accuracy based on out-of-sample errors,
LPML was also calculated based on leave-one-out cross-validation ap-
proach and. In terms of temporal treatments, the AR-1 models were
noted to be superior for four out of six cases, indicating the trans-
ferability of the advantage of this specification from training er-
rors (in-sample) to test errors (or out-of-sample). In terms of model
performance across different types, the Mixture-5 dominated in all
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Fig. 2. Heatmaps of various ranking criteria under different models.Notes: ind represents probability of crash risk based on space-time variability and theta represents the crash risk based
on Bayesian estimated crash count.

cases, further establishing the superiority of mixture approach. This
finding demonstrating Mixture-5′s superiority on cross-validation sug-
gests that this model may be suitable for safety agencies which im-
plement crash prediction models and expect a superior performance
under different areas of focus.

5 One of the primary objectives of this study was to explore the possi-
bility of adopting the mixture models as a complimentary approach to
traditional site ranking. Different evaluation criteria were employed
to assess the site ranking performance. In terms of total rank differ-
ence (TRD) results based on estimated crash counts for Base model
and probability of space-time variability (ind) for mixture models,
there were several discrepancies between the two approaches. This
finding established the fundamental difference between traditional
and mixture models in designating crash risk. Mixture-5 was superior
at site ranking compared to Mixture-2, indicating the advantage of the
more flexible approach of larger components.

6 Another site ranking criterion (site consistency test (SCT)) was em-
ployed to explore the difference in identification of unsafe sites based
on two datasets: estimated crash count and the spatial variability
across time. The advantage of mixture models to act as a compli-
mentary approach for site ranking was revealed by the spatial vari-
ability SCT results as the mixture models were able to identify the

sites which experienced smaller crash counts previously but witnessed
higher crash risk in future. This finding offers support for imple-
menting the mixture models as a pro-active approach employed in
collaboration with traditional site ranking based on estimated crash
counts (whose SCT results offered negligible insights). Such models
may prove helpful in the network screening step of safety manage-
ment process to identify sites which may turn unsafe in future and es-
cape the detection from traditional methods.

7 Overall, the research findings in most cases reveal that the mixture
models outperform the traditional ones in both crash prediction and
site ranking. As discussed before, such phenomenon indicates the
importance of explicitly considering some specific zones where the
space-time interactions deviate from the global spatiotemporal pat-
tern. Thus far, most of the existing literature focuses on the models
relying on the relationship between covariates and response variables,
with very few investigating the variability in the unobserved hetero-
geneity beyond the general space-time trend. Therefore, it is highly
recommended that additional studies using different observed or sim-
ulated data be performed to verify the benefits associated with the
mixture models as shown in the present study.
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Albeit the present study conducts a comprehensive comparison of
mixture models from different perspectives, the results observed in this
paper require some caveats. First, the planning level data from the TAZs
of city of Irvine were used to develop models. Future studies may ex-
plore other macro-levels (such as census tracts or counties) or smaller
scale roadway entities (such as intersections or segments) to verify and
compare the findings of this study. Second, it was clearly stated in the
methodology section that this study deliberately avoided the inclusion of
explanatory variables as they may have blurred the comparison between
concerned models. It would be interesting to see if the findings of this
study hold true if the models incorporated diverse covariates as some
factors (e.g., exposure) may address the spatial and temporal aspects of
crash data, hence influencing the posterior estimates and maybe sub-
sequently model performance. Finally, previous literature has demon-
strated there is an obvious relationship between frequency and sever-
ity (Kweon and Kockelman, 2003; Malyshkina and Mannering,
2008). Even though the proposed approach represented an alternative
efficient way of handling the variability of crash counts within a rela-
tively long time interval, it is worth investigating the adaptation of the
approach into injury-severity analysis and evaluating the pertinent per-
formance in the near future.
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