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Many neighborhood weight matrices have been adopted for modeling 
crash spatial heterogeneity. However, there has been little evaluation  
of their influence on crash prediction modeling performance. This 
study investigated 17 spatial-proximity matrices for development 
of spatial crash prediction models and site ranking with county-level 
data in California. Of the group of matrices being evaluated, traffic 
exposure–weighted and population-weighted distance-based matrices 
were first proposed in the traffic safety field. Bayesian spatial analysis  
was conducted with a combination of a first-order autoregressive error 
process and time trend for crashes to address the serial correlation 
of crashes in successive years. Two diagnostic measures were used 
for assessment of goodness of fit and complexity of models, and seven 
evaluation criteria were employed to assess the benefits associated with 
better-fitting models in site ranking. The results showed that modeling 
performance improved with an increase in number of neighbors consid-
ered in the weight matrix. However, a larger number of neighbors also 
led to greater variability of modeling performance. Specifically, Queen-2 
and Decay-50 models proved to be superior among the adjacency- and 
distance-based models, respectively. The significance of incorporating 
spatial correlations was highlighted by the consistently poor performance 
of the base model, which included only the heterogeneity random effect. 
Finally, model-fitting performance seems to be strongly correlated with 
site-ranking performance. The models with closer goodness of fit tend to 
yield more consistent ranking results.

Previous research studies explored the spatial component of crashes 
as an advancement to the existing crash prediction models (1–3). 
Numerous spatial units were considered to understand the implica-
tions of crash-causing factors that operate at a spatial scale (e.g., urban 
planning policy, census characteristics, and highway classification). 
Depending on the purpose of the study, the sites of interest could range 
from microscopic locations, such as block groups (4), intersections (5), 
road segments (6), and corridors (7, 8), to macroscopic areas, such as 
census tracts (9), local health areas (10), traffic analysis zones (TAZs) 
(11), or counties (12–15). Comparatively speaking, microscopic 

analysis is primarily centered on investigating geometric or traffic 
characteristics that influence the safety on a network. In contrast, 
macroscopic safety analysis concentrates on quantifying the impact 
of socioeconomic and demographic characteristics, transportation 
demand, and network attributes so as to provide countermeasures 
from a planning perspective such as enactments of traffic rules, police 
enforcement, safety campaigns, and areawide engineering treatments.

The literature review demonstrates that a wide range of neighbor-
hood weight matrix structures have been proposed to model crash 
spatial heterogeneity. Aguero-Valverde and Jovanis (16) explored 
the effect of spatial correlation in models of crash frequency at the 
segment level by using a full Bayesian approach with conditional 
autoregressive (CAR) effects (17). Three adjacency-based weight 
matrices were developed for first-, second-, and third-order neigh-
bors; these models showed a significantly better fit than the Poisson 
lognormal model, which considered only heterogeneity. Guo et al.  
developed models to incorporate the spatial proximity at the corridor 
level between intersections due to similarity in road design and envi-
ronmental characteristics (8). The modeling results demonstrated that 
the Poisson spatial model provided the best fit. Recently, Aguero-
Valverde et al. used a multivariate spatial model to account for spatial 
correlation among adjacent sites (road segments) to enhance model 
prediction for different crash types (18). The multivariate CAR model 
was used with the first-order adjacency-based weight matrix, which 
was observed to have the best fit due to spatial and multivariate 
correlation.

Of the macrolevel studies, Best et al. investigated the risk of 
leukemia in children at three levels of data aggregation: local author-
ity districts, census wards, and 1-km2 grid squares (19). They examined 
adjacency- versus distance-based neighborhood spatial weights for 
each analysis. To explore the significant variables influencing crashes, 
Rhee et al. used spatial variables developed by geographic informa-
tion systems to prepare a database of traffic crashes at the TAZ level 
(20). The Rook adjacency-based weight matrix was used for analy-
sis of the spatial component of crash heterogeneity. Results showed 
that the spatial error model was better than the spatial lag model. 
Aguero-Valverde and Jovanis applied a univariate space–time model 
to analyze county-level crash counts (14). The first-order adjacency 
matrix was utilized for the CAR error term. The results demonstrated 
the existence of spatial correlation in the crash data. Huang et al. 
proposed a Bayesian spatial model to account for county-level vari-
ations of crash risk in Florida (15). A CAR prior was specified to 
accommodate for the spatial autocorrelations of adjacent counties. 
The results exhibited little difference between the safety effects of 
risk factors on all crashes and those on severe crashes.
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Compared with the large amount of research dedicated to model-
ing spatial heterogeneity in crash counts with various weight matrix 
structures, there is little evaluation of the influence of these different 
weight matrices on crash prediction modeling performance. Aguero-
Valverde and Jovanis evaluated the effects of different neighboring  
structures on the spatial correlation in crash frequency models using 
the CAR model (16). The weight structures being investigated include 
exponential decay; adjacency-based, adjacency-route information; 
and distance order structures. Modeling results showed relatively 
inferior performance by using exponential decay models. Another 
study presented an evaluation of crash prediction models at the TAZ 
level with alternative types of spatial-proximity structures containing 
0–1 first-order adjacency, common-boundary length, and centroid 
distance-based models (21). The results confirmed the extensive 
existence of cross-zonal spatial correlation in crash occurrence.

This study compares alternative spatial-proximity structures and 
represents a natural continuation of the foregoing two studies, with 
a number of important differences and unique contributions. First, 
more comprehensive weight matrices are evaluated that include two 
orders of Queen adjacency-based, two orders of Rook adjacency-
based, common boundary length adjacency-based, five exponential 
decay, five pure distance order, population-weighted, and traffic 
exposure–weighted distance order matrices. Of the 17 neighbor-
ing structures, the last two were first proposed in the traffic safety  
field. Second, the serial correlation of the county-level crash count 
was taken into account by using the first-order autoregressive error 
process and global time trend combined. Third, the relationship 
between the crash frequency modeling performance and the number 
of neighbors in the weight matrices was explored in greater detail. 
Moreover, the site-ranking performance of different weight matrices  
was assessed by seven evaluation criteria: sensitivity, specificity, 
positive predictive value (PPV), negative predictive value (NPV), 
Cohen’s kappa, total ranking difference (TRD), and mean absolute 
deviation (MAD).

Methodology

Spatial autocorrelations were explored among 58 counties in  
California with a wide array of weight matrices ranging from simple 
to more sophisticated ones. This study analyzed 17 neighborhood 
matrices and applied them to the county-level data sets. In addition, 
the model without accounting for spatial heterogeneity was also 
developed for comparison with spatial models. Hence, the process 
involved development of 18 models using WinBUGS for estimation 
of crash rate, evaluation of their goodness of fit, and finally evalu-
ation of the relative site-ranking performance. This study used the 
full Bayesian hierarchical approach to account for structural hetero
geneities such as temporal and spatial ones. The model is of the form 
developed by Besag et al. (22):

∼y eit it itPoisson (1)( )θ

where

	yit	=	observed crash count at county i in time period t,
	θit	=	mean expected crash rate for site i in time period t, and
	eit	=	exposure in county i of time period t.

In this case, the exposure is the total daily vehicle miles (DVMT) by 
county. The crash rate is modeled as follows:

t uit k i ilog (2)0 1( )θ = β + β + ∅ +

where

	β0	=	 intercept,
	β1	=	fixed coefficient for linear trend term tk,
	∅i	=	spatially structured random effect, and
	ui	=	spatially unstructured random effect (heterogeneity).

This study did not incorporate any covariates because the major focus 
was to investigate the spatial correlations. A similar framework can 
be found in other studies (23, 24). Likewise, the interaction between 
time and space was not included since it might have potentially 
blurred the comparison of different weight structures. In addition 
to the global time trend, this model also accounts for the auto
regressive safety effect by specifying the distribution of ui as a lag-1 
dependence in errors. Lag-1 is the correlation 1 year apart in this 
study (hence k = 1). The first-order autoregressive error process was 
chosen to capture the departure from the trend and it was based on 
the assumption of stationarity restriction:

∼ui
inormal 0,

1
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where ε is the uncorrelated heterogeneity and γ is the autocorrela-
tion coefficient with the following range: 0 < γ < 1. The combina-
tion of first-order autoregressive and deterministic time trend for 
serial correlation can be found in current practice, such as stepwise 
autoregressive method specification (25).

To accommodate the spatial correlation in the model, the CAR 
prior was introduced for the spatial random effects. The formulation 
of the CAR model used in these analyses is as follows (26):

∼i j Ni j j i, , , (5)2 2[ ] ( )∅ ∅ ≠ τ ∅ τ∅

The foregoing equations show that the neighboring sites influence 
the crash risk associated with an area. Subscripts i and j represent 
a county and its neighbor, respectively, and j ∈ Ni, where Ni repre-
sents the neighbor set for region i. The weights are included because 
they also influence the risks, besides the neighbors. The weights for 
the adjacency and distance models are given by weights ij (wij) = 1  
if i, j are adjacent, and 0 otherwise. Apart from the adjacency-based 
models, different weights were used for other models; these weights 
are explained in detail in the following subsections. For ease of illus-
tration, all weight matrices being evaluated in the study are classified 
in Figure 1a.

Adjacency-Based Models

Adjacency-based models ignore the distance between sites of inter-
est and focus only on neighboring structures based on proximity in 
space; these models give dichotomous outcomes. Five neighbor-
hood adjacency-based weight matrices were developed, namely, 
Queen-1, Queen-2, Rook-1, Rook-2, and boundary length (BL). 
The difference between Queen and Rook is the criterion of assign-
ment of neighbors. Queen uses the common boundaries as well as 
vertices to determine the adjacent neighbors, whereas Rook considers 
only the common boundaries. For example, in Figure 1b, in the case of 
Mariposa County, Rook neighbors are Tuolumne, Merced, and Madera 
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Counties, and Queen neighbors are Tuolumne, Stanislaus, Merced, 
Madera, and Mono Counties. The numbers for each term reflect the 
order of contiguity; this means that the difference between Queen-1 
and Queen-2 (and corresponding Rook-1 and Rook-2) is that Queen-1 
includes the direct neighbors that share common points, whereas 
Queen-2 also includes the further neighbors of neighbors. Finally, 
another weight matrix (BL) was developed for immediate neighbors 
based on the length of the boundary shared between counties.

Distance-Based Models

To account for a variety of scenarios, 12 models based on distance 
matrices were also developed. The simplest model, equal distance 
(ED), assigned equal weight for the weight matrix because it included 
all the counties as neighbors. The other models placed different 
weights on neighbors. For distance 0 (ED), 0.5, 1, 2, and 3, the 
following formulations were used: wij = 1/dist0

ij, wij = 1/dist ij
0.5, wij = 

1/distij, wij = 1/dist2
ij, and wij = 1/dist3

ij, respectively. These models 
only accounted for the relative distance between neighboring coun-
ties and placed more weight on counties that were closer together. 
Another similar set of models was developed (Decay-50, -100, 
-150, -200, and -250) that was also based on the distance between 

neighbors. However, these decay models were essentially different 
from regular distance models since there was a drastic reduction 
of weights as the distance between neighbors increased (27). The 
corresponding weight matrix for the decay model was defined as 
follows:

w eij
ij (6)dist 0= − δ

where

	 wij	=	weight of jth neighbor of ith county,
	distij	=	� geographic centroid distance between counties i and j, 

and
	 δ0	=	a constant.

Five decays were chosen to incorporate different distances 
between the counties because the range of geometric centroid dis-
tances between counties was from 25 to 962 mi. In addition to the 
two types of distance-based matrices, two gravity models based on 
distance were developed; these models borrow the idea of a grav-
ity model from the standard “four-step” travel demand modeling 
process. The corresponding weight matrices were defined by wij = 
pipj/distij, where pi and pj are normalized populations and DVMTs 

(a)
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FIGURE 1    (a) Types of weight matrices and (b) Queen and Rook neighbors.
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of two counties, respectively. To the best of the authors’ knowledge, 
such gravity models are the first applied in the traffic safety field. 
Similar neighboring structures can be found in the public health 
field (23).

Goodness of Fit of Crash Frequency Models

This study used the deviance information criterion (DIC) to assess 
the complexity and goodness of fit of the models. DIC is a hierar-
chical modeling generalization of the Akaike information criterion, 
which was proposed by Spiegelhalter et al. to account for model fit 
and complexity (28). Specifically, DIC is defined as

D p D pD DDIC 2 (7)( )= θ + = +

where D(θ–) is the deviance evaluated at the posterior means of esti-
mated unknowns (θ–), and the posterior mean deviance D

–
 can be taken 

as a Bayesian measure of fit or “adequacy.” The term pD denotes the 
effective number of parameters in a model as the difference between 
D(θ–) and D

–
 (i.e., mean deviance minus the deviance of the means). 

Generally, smaller values of DIC are preferred. As a general guide-
line, a difference of 7+ points in the DIC is treated as significant for 
modeling performance (17).

To account for the random spatial effect explained by the model, 
the fraction of total random variation was computed as a ratio of the 
empirical variance of the spatial component versus the total variance 
(15). The formulas are
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where ui is a spatially structured random effect and vi is a spatially 
unstructured random effect, with i ranging from 1 to n = 58.

Site-Ranking Evaluation

Criteria Based on Binary Partitions of Data

Under the criteria based on binary partitions of the data, the counties 
were divided into two groups based on estimated crash rates from 
various models with a certain threshold. In the current study, a cut 
line of 10% was used. This cutoff means that the top 10% counties 
were considered as high risk, and the remaining counties were treated 
as low risk. The common binary diagnostic criteria including sensi-
tivity, specificity, PPV, and NPV were calculated with the following 
formulas (29):

TP

TP FN
sensitivity (11)=

+

TN

TN FP
specificity (12)=

+

TP

TP FP
PPV (13)=

+

TN

TN FN
NPV (14)=

+

where

	TP	=	� number of truly high-risk counties correctly identified as 
unsafe,

	FP	=	number of truly low-risk counties identified as unsafe,
	TN	=	number of truly low-risk counties identified as safe, and
	FN	=	number of truly high-risk counties identified as safe.

Because this study is only focused on the relative site-ranking perfor-
mance of various models, the model with the best predictive perfor-
mance (the lowest DIC) is chosen to establish the “truly” high-risk 
or low-risk counties. Briefly, sensitivity is the ability of a model to 
correctly classify an individual as truly high risk. Specificity measures 
the ability of a model to correctly classify an individual as low risk. 
PPV represents the percentage of counties identified by one model as 
high risk that are truly high risk, whereas NPV indicates the percent-
age of counties identified by one model as low risk that are truly low 
risk. For all criteria, if the value is higher (as close to 100 as possible), 
this finding suggests that the model of interest is doing as well as the 
model with the lowest DIC.

Criteria Based on Multiple Partitions of Data

Aside from the foregoing criteria based on the dichotomy of coun-
ties, the counties can also be divided into multiple groups to get 
more precise results. Cohen’s kappa was chosen to determine the 
magnitude of county-ranking agreement based on three groups: 
high (top 10th percentile), medium (11th to 89th percentile), and 
low (90th percentile and lower) (30). For each group, the number 
of common identified counties by two models was tallied and the 
kappa statistic was calculated with the following equation:

K
p p

p
o e

e1
(15)

( )
( )

=
−

−

where po is the proportion of observations in agreement, and pe 
represents the proportion in agreement due to chance. The kappa 
statistic can ensure that only truly high-risk counties (excluding 
the random entries) were included for their respective groups. A 
relatively higher value of kappa indicates a larger number of sites 
(agreement) commonly identified as unsafe between the crash 
prediction models.

Criteria Based on Continuous Comparison of Data

Finally, in addition to categorizing counties into multiple groups, the 
relative site-ranking performance of various models can be evaluated 
by comparing all counties in a continuous fashion. Two criteria of this 
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category were implemented: TRD (31), and MAD (32). TRD is of 
the following form:

R Ri j i k

i

n

TRD (16), ,

1
∑= −

=

where Ri,j is the rank of county i by model j, and Ri,k is the rank of 
county i by model k. The smaller the TRD, the closer the two models 
are in terms of site ranking.

Alternatively, the estimated crash rates by various models can be 
compared to determine MAD:

n
i j i k

i

n

MAD
1

CR CR (17), ,

1
∑= −

=

where CRi,j is the estimated crash rate of county i by model j, and 
CRi,k is the estimated crash rate of county i by model k. This measure 
may be regarded as the safety component that represents the crash 
rate prediction performance of the models relative to the measure 
of “true safety.” The degree of deviation from the expected crash 
rate would be reflected by the MAD value for a particular model: 
a relatively greater value (compared with other competing models) 
would mean a greater deviation from the expected “true” crash rate; 
this deviation reflects inferior prediction performance.

Data Preparation

The data used in this study were collected from multiple sources in 
California: Statewide Integrated Traffic Records System, Highway 
Performance Monitoring System, California Department of Finance, 
and Southern California Association of Governments (SCAG). 
Collisions from various counties in California that occurred from 
2008 to 2013 were obtained from the Statewide Integrated Traffic 
Records System, which contains different severity levels. Given the 

underreporting issue related with property-damage-only collisions, 
the study focused only on the total fatal and injury collisions of the 
counties (33). In addition, a main exposure-related factor of county 
safety performance, DVMT (12), was collected from the Highway 
Performance Monitoring System for the same time periods. Further-
more, a main demographic factor, population, was gained from the 
California Department of Finance for the use in population-based 
gravity model. In addition, the data for BL and the geometric cen-
troid distances between all counties were obtained from SCAG. All 
the distance-based models were based on the other data set, which 
included the distances between centroids of various counties. Table 1  
shows the characteristics of first- and second-order adjacency-based 
matrices, BL, and distance-based matrices. Table 2 depicts the sum-
mary information for the various counties in terms of population, 
DVMT, BL, distance, and total number of fatal and injury collisions.

Results

The models were implemented in the freeware WinBUGS pack-
age using a Markov chain Monte Carlo algorithm (17). In the ab- 
sence of strong prior information for factor effects and dispersion 

TABLE 1    Characteristics of Neighborhood Weight Matrices

Weight Matrix Min. Max. Median Mean SD Sum

Queen-1   2   8   5 4.91 1.32 285

Queen-2   4 21 14 13.1 3.54 762

BL   2   8   5 4.91 1.32 285

Rook-1   2   8   4 4.29 1.23 249

Rook-2   4 17 13 12.1 3.36 700

Distance based 57 57 57 57 na 3,306

Note: na = not applicable.

TABLE 2    Descriptive Statistics of Collected Data of Various Counties

Variable Year Min. Max. Median Mean SD

Collisions 2008 34 52,896 791 2,993 7,299
2009 31 51,371 769 2,868 7,076
2010 34 50,683 669 2,821 6,985
2011 26 50,989 730 2,789 7,010
2012 25 51,207 697 2,801 7,065
2013 30 51,502 689 2,755 7,101

Population 2008 1,214 10,347,422 180,923 656,696 1,469,310
2009 1,194 10,398,067 182,519 662,962 1,478,749
2010 1,177 9,840,555 179,588 644,265 1,408,182
2011 1,113 9,866,172 179,134 647,470 1,413,526
2012 1,088 9,923,806 180,800 652,028 1,422,391
2013 1,078 10,002,804 181,150 657,967 1,434,566

DVMT (mi) 2008 168,265 214,971,058 5,005,121 15,387,562 31,617,871
2009 170,690 214,236,853 4,836,964 15,317,670 31,469,076
2010 169,420 211,876,665 5,448,915 15,482,772 31,148,547
2011 164,587 214,458,135 4,761,505 15,353,471 31,594,730
2012 166,923 214,482,442 4,551,148 14,768,115 31,478,320
2013 165,180 215,817,520 4,462,740 14,924,626 31,747,694

BL (mi) na 0.04 204 37 45 34

Distance between county 
centroids (mi)

na 25 962 227 273 176 
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parameters, uninformative priors were assumed with normal dis-
tribution (0, 1,000) for all regression coefficients, and with gamma 
distribution (0.001, 0.001) for precision estimates. In the model 
calibration, the first 5,000 samples were discarded as a burn-in and 
a further 25,000 iterations were run; these iterations were used in the 
calculation of the posterior estimates. Convergence was assessed 
with the Gelman–Rubin convergence statistic and visual inspection 
of the trace plot (34). Plus, the sample Markov chain errors of all 
parameters were less than 5% of the associated standard deviation. 
For the gravity matrix, the neighbors were weighted according to 
the size of the county population and DVMT, but they were not used 
as independent variables for development of the models.

Modeling Results

Mean and Significance

Table 3 shows the posterior mean and standard deviation of the 
coefficient estimates (intercept, β1, and γ) for all 18 models; these 
values indicate their quantitative proportionality on the crash rate 
by DVMT. The coefficient for yearly time trend, β1, is statistically 
significant for all models except the base one. The base model, 
which included only heterogeneity random effects, was observed to 
have a four times larger standard deviation for β0 and β1 than rest of 
the spatial models. Apparently, the loss of precision due to greater 
variance was so high that β1 was rendered insignificant considering 
the 95% confidence interval. Such a significant loss of precision 
could be attributed to the exclusion of spatial correlations because all 
other spatial models had a remarkably higher precision. Moreover, the 
autocorrelation coefficient (γ) appeared to be statistically significant 

for all models; this finding indicates the strong serial correlation 
between crashes of successive years.

The lower value of DIC indicates a better fit of the model. As 
shown in Table 3, the values for the 18 matrices range from the 
lowest (2,825.25) for Decay-50 to the highest (3,046.76) for the 
base. The value of fit (D

–
) is mostly similar for all the matrices, but 

DIC varies greatly since it is governed mainly by the complexity 
(pD), which has a wide range across the models with the lowest for 
Decay-50 (59.9) and highest for the base (280.5). The two gravity 
models also exhibit complexities comparable with the base model. 
The increase in complexity reflects more effective parameters in the 
model. Usually, such an increase in complexity is compensated for 
by better fitness to accomplish a lower DIC value. But the D

–
-values 

of these three matrices are similar to the rest; this finding indicates 
that better fitness was achieved at the cost of a much larger number 
of effective parameters.

Because this study employed both adjacency- and distance-based 
matrices, the authors investigated the possible influence of the 
number of neighbors involved in a matrix on the goodness of fit. 
The DIC and the average number of neighbors for all matrices were 
plotted (Figure 2a). There was a significant difference between the 
number of neighbors for adjacency- and distance-based matrices 
and also within the adjacency matrices themselves (Table 1). This 
difference is clearly shown in Figure 2a, where similar matrices are 
aggregated. A drop in DIC is observed among the adjacency-based 
matrices, with Rook-2 and Queen-2 demonstrating better fitness 
of the model with the real data. Both these matrices had twice the 
number of neighbors than their corresponding first-order matrices. 
As for the Queen-1 and BL, BL has a lower DIC even though they 
have the same number of neighbors. This finding is probably due to 
the increased information embedded in the BL matrix or the length 

TABLE 3    Parameter Estimates and Comparison of Model Fit

β0 β1 γ Goodness of Fit Average 
Predicted Crash 
Rate (10−4)Model Mean (SD) Mean (SD) Mean (SD) D

–
pD DIC Fraction

Base −8.702 (0.058) −0.022 (0.016) 0.238 (0.012) 2,766.23 280.53 3,046.76 1.66674 NA

Queen-1 −8.701 (0.015) −0.022 (0.006) 0.062 (0.019) 2,764.72 219.74 2,984.46 1.66404 0.629

Queen-2 −8.699 (0.014) −0.023 (0.006) 0.058 (0.021) 2,764.42 168.70 2,933.12 1.66426 0.629

Rook-1 −8.699 (0.013) −0.023 (0.006) 0.058 (0.019) 2,765.18 236.28 3,001.47 1.66379 0.631

Rook-2 −8.697 (0.014) −0.023 (0.006) 0.056 (0.021) 2,764.42 178.44 2,942.86 1.66413 0.629

BL −8.699 (0.014) −0.023 (0.006) 0.058 (0.023) 2,755.21 207.30 2,972.51 1.66381 0.629

D0 (equal distance) −8.698 (0.014) −0.023 (0.006) 0.051 (0.020) 2,765.58 230.39 2,995.98 1.66452 0.629

D0.5 (1/distance0.5) −8.698 (0.014) −0.023 (0.006) 0.053 (0.022) 2,765.31 206.32 2,971.63 1.66444 0.629

D1 (1/distance) −8.695 (0.014) −0.024 (0.006) 0.053 (0.020) 2,765.10 167.78 2,932.88 1.66431 0.629

D2 (1/distance2) −8.701 (0.013) −0.022 (0.006) 0.057 (0.022) 2,765.25 198.28 2,963.54 1.66416 0.631

D3 (1/distance3) −8.702 (0.013) −0.022 (0.006) 0.056 (0.022) 2,765.57 190.15 2,955.73 1.66398 0.631

Decay-50 −8.699 (0.013) −0.023 (0.006) 0.057 (0.022) 2,765.33   59.91 2,825.25 1.66412 0.629

Decay-100 −8.701 (0.014) −0.022 (0.006) 0.054 (0.021) 2,765.06 218.85 2,983.91 1.66426 0.629

Decay-150 −8.699 (0.014) −0.023 (0.006) 0.054 (0.022) 2,765.01 232.48 2,997.50 1.66437 0.629

Decay-200 −8.696 (0.014) −0.024 (0.007) 0.056 (0.022) 2,764.91 147.48 2,912.39 1.66439 0.629

Decay-250 −8.697 (0.014) −0.023 (0.006) 0.052 (0.021) 2,765.21 186.63 2,951.84 1.66445 0.629

Gravity–population −8.705 (0.014) −0.021 (0.005) 0.077 (0.015) 2,764.96 269.72 3,034.69 1.66401 0.627

Gravity–DVMT −8.706 (0.017) −0.021 (0.007) 0.077 (0.015) 2,764.62 265.82 3,030.45 1.66419 0.626

Note: Nonsignificant variable is shown in shaded cell. Base model is one without considering spatial correlation among counties. Refer to Figure 1 for details of weight 
matrices classification.
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of the common boundary. An overall downward linear trend is 
observed with an increase in the number of neighbors, indicating 
that distance-based models had a better fitness collectively. How-
ever, it is clearly shown in Figure 2a that the distance models were 
scattered in a wide range on the DIC scale. In order to better under-
stand their behavior, they were split into two parts—pure distance 
and decay models—and their DIC trend is shown in Figure 2, b and c,  
respectively. As shown, both groups have a variable trend. In the 
case of pure distance matrices, ED had the worst fit and then the DIC 
score dropped steeply until D1, which had a difference of 63 points 
from ED. The model fitness again drops for D2 and finally improves 
for D3. A similar highly variable trend was exhibited by the decay 
matrices, with the decay constant of 50 revealing the best fit, which 
abruptly drops (DIC rises) for Decay-100 and then seems to oscillate 
until Decay-250. Overall, the trend implies that careful consider-
ation should be placed when dealing with distance-based weight 
matrices when the distance has a wide range and high variance. It is 
therefore highly recommended that a sensitivity analysis be impera-
tive for spatial models using distance-based matrices to ensure that 
the appropriate distance-based weight structures are selected.

Average Predicted Crash Rate

As shown in Table 3, the base model significantly deviates from the 
rest in terms of model predicted crash rate. In the case of distance-
based models, a linear trend was observed. For decay models, the 
predicted crash rate reflected an increase for each increment of decay 
constant; it went from 1.66412 for Decay-50 to an upward limit 
of 1.66445 for Decay-250. A similar linear trend was noted from 
Models D0 to D3, where the average predicted crash rate decreased 
with an increase in the exponential power of the distance function. 
This variation among the estimation results of the models exhibits 
the tendency of the prediction performance to be based on the type 
of distance weight matrices.

Fraction

In terms of the fraction, which is a measure of the spatial random 
effect explained by the model, the decay models had marginal infe-
riority over pure distance as D2 and D3 were able to attribute a 
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FIGURE 2    DIC trend (a) with corresponding number of neighbors by matrix, (b) by pure distance matrix, and  
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relatively higher percentage of the variation to spatial effects. The 
gravity models had the lowest scores. It seems that the advantage 
of distance-based modeling was diluted because of the inclusion 
of extra information on populations and traffic exposure of the two 
counties under consideration.

Site-Ranking Evaluation Results

The 18 models were subjected to the aforementioned criteria for 
assessment of complexity and fitness. In accordance with previous 
studies (35), this study conducted the evaluation tests by compar-
ing the site ranking of all models with Decay-50, since it displayed 
significantly better model fit and complexity. Table 4 exhibits the 
corresponding evaluation results.

Sensitivity, Specificity, PPV, and NPV

This study utilized a 10% threshold for filtering out the hazardous 
sites by considering the budget constraints used in practice. Table 4 
demonstrates that except for the gravity models, all other models 
have values of 1 for both sensitivity and specificity. This finding 
means that these models screen out the same top 10% high-risk 
counties as did the Decay-50 matrix, and the proportion of coun-
ties identified by these models as high risk that are truly high risk 
is 100%. For the criteria of specificity and PPV, the base model has 
the smallest values, 0.8182 and 0.9853, respectively. These numbers 
suggest that about 18% of the counties identified by the base model 
as low risk are not truly safe, and the percentage of counties identi-
fied by the base model as high risk that are truly high risk is 98.53%. 

Overall, the base model and gravity models have the lowest site-
ranking agreement with the Decay-50 model. It is interesting to note 
that the three models have the largest DIC difference with Decay-50. 
Such a phenomenon indicates that the model with closer predictive 
capability tends to flag more common high-risk counties.

Cohen’s Kappa, TRD, and MAD

Kappa is another quantitative measure of agreement between 
Decay-50 and other models. Because all the models revealed 83% 
agreement, further scrutiny was required for assessment of the rela-
tive site-ranking agreement. The base model had the lowest agree-
ment, closely followed by the gravity models. Again, such a trend 
was also witnessed for the model fitness assessment.

TRD and MAD are more sophisticated tools since they compare 
each county in a continuous fashion. Lower scores indicate greater 
agreement between the models and Decay-50. From Table 4, it is 
seen that under MAD, the base model has a significantly larger 
value of 2.2342, followed by the gravity models. A similar trend was 
found for TRD. Once more, these criteria show that the base model 
has the most ranking difference with Decay-50. Another noteworthy 
trend observed for TRD and MAD is the superior performance of 
most of the distance-based models with relatively lower values of 
TRD and MAD. For example, the lowest TRD score (52 for D2) 
belongs to a distance-based model, which is three times less than the 
worst adjacency-based model (176 for BL). The same set of models 
exhibit similar performance for MAD; the deviation observed for 
BL is twice that of D2. The potential rationale may be explained by 
the fact that distance-based weight matrices give a continuous output 
depending on the proximity between sites whereas the adjacency-

TABLE 4    Site-Ranking Evaluation Results of Alternate Models Compared with Decay-50

Model Sensitivity Specificity PPV NPV Cohen’s Kappa TRD MAD

Base 1 0.8182 0.9853 1 0.8365 517 2.2342

Queen-1 1 1 1 1 0.8380 130 0.5115

Queen-2 1 0.9545 0.9963 1 0.8384 116 0.4490

Rook-1 1 1 1 1 0.8380 136 0.4927

Rook-2 1 0.9545 0.9963 1 0.8384 124 0.4562

BL 1 1 1 1 0.8380 176 0.6213

D0 equal distance 1 0.9545 0.9963 1 0.8384 110 0.4708

D0.5 (1/distance0.5) 1 0.9545 0.9963 1 0.8384 90 0.4380

D1 (1/distance) 1 0.9545 0.9963 1 0.8384 71 0.3579

D2 (1/distance2) 1 1 1 1 0.8380 52 0.3085

D3 (1/distance3) 1 1 1 1 0.8380 94 0.3934

Decay-100 1 1 1 1 0.8380 57 0.3458

Decay-150 1 1 1 1 0.8380 72 0.3259

Decay-200 1 0.9545 0.9963 1 0.8384 81 0.3724

Decay-250 -1 0.9545 0.9963 1 0.8384 85 0.4137

Gravity–population 0.9963 1 1 0.9565 0.8379 170 0.9970

Gravity–DVMT 0.9963 1 1 0.9565 0.8379 170 0.8968

Correlation coefficient 
between each  
criterion and DIC

-0.55 (0.0224) 
 

−0.13 (0.6187) 
 

−0.13 (0.624) 
 

-0.55 (0.0224) 
 

-0.71 (0.0015) 
 

0.60 (0.01) 
 

0.68 (0.003) 
 

Note: Base model is one without considering spatial correlation among counties. Refer to Figure 1 for details of weight matrices classification. Statistical significances 
of correlation coefficients shown in parentheses. Statistically significant correlation coefficients shown in bold.
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based matrices are restricted to a binary output. Also, distance-based 
matrices incorporated more neighbors.

Correlation Between Each Criterion and DIC

As discussed earlier, the foregoing criteria seemed to have some 
correlation with the modeling goodness-of-fit measure: DIC. The 
authors were encouraged to run the Pearson’s correlation between 
each site-ranking criterion and DIC. The correlation coefficients 
and associated p-values are shown in the last row of Table 4. It is 
clearly shown that, except for specificity and PPV, all other criteria 
demonstrated a statistically significant correlation with DIC. Plus, 
the associated coefficients were high in magnitude as well. This 
finding suggests that the models with closer fitness and predictive 
performance tend to have more similar site-ranking performance.

Conclusions and Recommendations

The results from the comparison of different weight matrix struc-
tures yielded the following major findings:

1.	 The highest values of D
–
, pD, and DIC indicated that the inclu-

sion of the spatially structured random effect can fit the data better 
and reduce the effective number of parameters in the model, thereby 
leading to higher predictive capability.

2.	 The modeling performance appeared to increase with the 
increase in number of neighbors in the weight matrices. For example, 
Queen adjacency performed better than Rook adjacency, the second-
order adjacency performed better than first-order adjacency, and 
Decay-50 claimed the remarkably lower DIC than others.

3.	 The distance-based models had more neighbors in the weight 
matrices and tended to have better modeling performance than others. 
However, they also demonstrated larger variability of DIC compared 
with adjacency-based models.

4.	 The newly proposed gravity models appeared to fit the data 
slightly better than other distance-based models based on the D

–
-value. 

However, such a benefit was accompanied by a much larger effective 
number of parameters and therefore led to a higher DIC.

5.	 Most of the site-ranking evaluation criteria used in the study had 
a statistically significant correlation with DIC. This finding suggests 
that models with similar predictive capabilities tend to yield similar 
site-ranking performance.

Some recommendations for future research are the following:

1.	 In the current study, the different spatial-proximity matrices 
were compared by using the intrinsic Gaussian CAR prior. The other 
formulations of the CAR model such as proper Gaussian CAR, multi-
variate, and mixture models are worthwhile to examine and see if the 
results reported here can be replicated in those models.

2.	 Because the focus of this study was the comparison of different 
spatial-proximity matrices, no covariates were considered as influ-
ential factors for model development. But the authors acknowledge 
that the incorporation of significant covariates at the county level may 
affect the performance of the spatial models.

3.	 A sensitivity analysis is recommended for the distance-based 
matrices because an interesting (though not straightforward) trend 
was obtained in this study with variation of the constant in the case 
of decay models and the exponent of distance in the case of pure 
distance models.

4.	 Finally, such an investigation of spatial weight matrices should 
be conducted for different area levels (such as TAZs, census tracts, 
land assembly districts) so that the results of this study may be 
verified.
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