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ABSTRACT

The current study contributes to the safety litmeatby presenting a dedicated research for
comprehensive analysis of multivariate Dirichlebg@ss mixture spatial model for estimation of
pedestrian and bicycle crash counts. This studyses on the active transportation at Traffic
Analysis Zone (TAZ) level by developing a semi-paedric model that accounted for the
unobserved heterogeneity by combining the strengftiiscorporating multivariate specification
to accommodate correlation among crash modes,aspaidom effects for the impact of
neighboring TAZs, and Dirichlet process mixture fandom intercept. Three alternate models,
one Dirichlet while two parametric, were also deyeld for comparison based on different
criteria.

Bicycle and pedestrian crashes shared three irifalerariables: the positive correlation
of K12 student enrollment, the bike-lane densityd ahe percentage of arterial roads. The
heterogeneity error term demonstrated the presehstatistically significant correlation among
the bicycle and pedestrian crashes while the dpandom effect term exhibited the absence of a
significant correlation, which might explain thegsitly inferior performances associated with
the spatial models. The Dirichlet models were cstesitly superior to non-Dirichlet ones under
all evaluation criteria. Moreover, the Dirichlet deds exhibited the capability to identify the
latent distinct subpopulations and suggested tiatnbrmal assumption of intercept associated
with traditional parametric models does not holdetfor the TAZ level crash dataset of the
current study.

Keywords: Dirichlet process, Multivariate, Spatial Correlatj&Cross Validation
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INTRODUCTION
Non-motorists are defined as road users not inponwa motor vehicle and generally consist of

walking pedestrians, bicyclists, individuals in vwhehairs or motorized personal conveyances,
skateboarders and others (1). They are a vulnesdgment of the traveling public due to the
lack of a protective structure and difference irdypanass between them and motor vehicles,
which renders them prone to heightened injury Suiiméty in case of a collision (2). On the
other hand, active transportation provides enormbesefits for addressing the issues of
congestion, health, and environment (3-8). Theegf@ncouraging individuals to indulge in
active transportation, involving walking and bidypg, brings with it a societal obligation to
protect commuters as they engage in these modesvet. In response, fairly extensive research
(9-14) has been dedicated to the investigations fattors impacting non-motorist safety on
roadways. While these studies are useful for ifgng safety risks contributing to cyclist,
pedestrian, and motor-vehicle injury occurrenceeséh modal crashes have been modeled
separately, and few attempts have been made toigenibem into a multimodal approach,
which allows the flexibility to simultaneously det@ne the injury risk of different travel modes.
Plus, the multimodal approach may also ease thedfaselecting sites for safety improvement
interventions as well as potentially provide a mareonomically viable solution and
interventions for pedestrians and cyclists.

A central issue to the successful implementatibrtihe multimodal approach is the
development of multivariate crash frequency moadigh can jointly estimate the crash risk of
different modes which share some of the unobservettrogeneity. Ignorance of such
correlation among the multiple modes has beentititesd to reduce the efficiency of the models
due to lesser precise parameters (15-17). In casgrawith the large number of univariate
models dedicated to various mode users, very fadiest have used the joint models to analyze
the interaction between different modes of actramgportation. Recently, Convay et al. (18)
performed a bivariate correlation analysis to fihé locations of conflict occurrence among
bicycles and pedestrians, freight, passenger ears,cabs in an urban area. The conflict was
defined as the obstructions parked in or acrossbibgcle lane. The characteristics which
influenced the conflicts for between these modeseva¢so explored. In order to simultaneously
analyze the injury and traffic flow outcomes foffelient modes, Strauss et al. (19) subsequently
employed Bayesian multivariate Poisson modelstimtgng safety outcomes for motor-vehicle,
cyclist and pedestrian flow at intersections. Safetrformance functions were developed and
crash contributing factors were identified for eachde.

One common limitation associated with above twodistw lies in the lack of
consideration for spatial correlations within crakdita. The significance of incorporating spatial
correlations was highlighted by many studies (2D&i#h the consistently superior performance
of the spatial models over those accounting foetogieneity random effect only. The study by
Narayanamoorthy et al. (23) jointly analyzed thélgstrian and cyclist injury-severities while
accounting for the spatial correlation at the certsact level using generalized ordered-response
models. This study recommended the use of mulat@nmodeling and spatial dependency of
injury counts. Similarly, Nashad et al. (24) emm@dya copula-based approach for simultaneous
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estimation of crash counts for bicyclists and pe&thes crashes aggregated at the macro-level of
traffic analysis zones (TAZs). The incorporationsphtial term facilitated the identification of
hotspots at the zonal level which may prove berafior policy analysis.

Similar to the incorporation of spatial correlatistnuctures, some studies in traffic safety
addressed the unobserved heterogeneity by emplayomgparametric and/or semiparametric
models and observed their superiority at varioosith such as robustness and goodness-of-fit
(25-26). In terms of research dedicated to actiaesportation, the recent study by Heydari et al.
(27) proposed the Dirichlet process mixture (28§i¢velop flexible latent class model for joint
analysis of pedestrian and cyclist injuries atrthiero-level of intersections. It was observed that
the flexible approach was advantageous as it demaded superior predictive performance and
better capability to capture the correlated craata dvhich eventually provided more accurate
interpretation of influential factors for improventeof safety environment. The results also
demonstrated the need for consideration of suckibfee structure as the assumption of
homogeneity (in case of parametric models) amoadgway entities was observed to be false.

The literature review illustrated the limited usiesemi- or non-parametric models for
simultaneous analysis of active transportation madshes. In effect, to the knowledge of the
authors, the research for comprehensive analydisxble multivariate spatial models focusing
on active transportation is non-existent in theetsafiterature. To fill this research gap, the
authors adopted semi-parametric formulation thabaets for the unobserved heterogeneity by
combining the strengths of incorporating multivegiapecification of dependency among crash
modes (pedestrian and bicyclists), spatial randibects for the impact of neighboring areas, and
Dirichlet process mixture for random intercepts.uiFalternate models were developed for
comparison based on the goodness-of-fit and predieiccuracy. LPML (log pseudo marginal
likelihood) was calculated for cross-validationliming leave-one-out technique which makes
this criterion less prone to selection bias assediavith other cross-validation measures. Five
other evaluation criteria were employed, namely:ameabsolute deviations (MAD), mean-
squared predictive error (MSPE), thg” Rtatistic, the G statistic, and residual sum of squares
(RSS), which compare the alternate models on tissbaf their performance to accurately
predict the crash counts for both modal crashes.bEmefits of the flexible model structure were
also explored in terms of identification of latediusters and accommodation of random
distribution for parameters.

METHODOLOGY

Model Specification
The Full Bayesian (FB) framework was employed fstineation of six-year bicyclist and

pedestrian crashes aggregated at the Traffic AisaBene (TAZ) level. The FB approach was
chosen due to its capability to account for the hseoved heterogeneity from different
perspectives, such as incorporation of complexniatiecorrelation structures that exist within
the hierarchical structure of crash data. The FBr@gch is deemed to be more precise for
estimation of crashes with regard to its capabitity generate a posterior distribution of
parameters from Markov-chain Monte Carlo (MCMC) glation where the variable samples are
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random, rather than the point estimates generatedher traditional modeling approaches based
on maximum likelihood estimation. This approach bagn widely used for crash prediction
models due to the multilevel and correlated natfreata (29). Four crash frequency models
were developed. The general functional form ofrttealels is given in the following subsections,
while progressing from simple to sophisticated dpations.

Model 1: Multivariate

This model assumes that crash count of certain hweahj at a given location, yj,
obeys Poisson distribution, while the correspondibgervation specific error tergy follows a
multivariate normal distribution:

Yijldij~Poisson (4;;) (1)
In(2;;) = X{;B + &; @)
g;;~MVN (0, ) ®3)
i Ai i g g
Where Yij = (ié) ) lij = (Ai:) J &y = (ié) ’ x= (02 0;2) “)

In above equations’ is the matrix of risk factor is the vector of model parametetgjs the
independent random effect which captures the éxtiason heterogeneity among locatigyss
called the covariance matrix. The diagonal elensgnin the matrix represents the variance of
g;j, where the off-diagonal elements represent thamawce of crash counts of different modes.
The inverse of the covariance matrix represent grexision matrix and has the following
distribution:

Y~ I~Wishart(l,]) ) (5
Where | is the) x J identity matrix (30), and is the degree of freedom, J=2 herein representing
two crash outcomes corresponding to bicyclist agdeptrians crashes.

Model 2: Multivariate Spatial
Under Model 2, the spatial random effects were ripoated over the model represented in
Equation 2. The final model takes the followingnfoto account for spatial correlations among
the TAZs:
In(A;;) = X(;B + & + w; (6)

Where y is the spatially structured random effect whichldats the MCAR (multivariate
conditional autoregressive) (31) formulation todrmorate the spatial correlation among crashes
occurring at neighboring TAZs.

Uilug, 20 ~NjQpni Ci s U, 21 ) (7)
Where each),; is a positive definite matrix representing the dibonal variance matrix, and
the adjacency matrixC;; is of the same dimension wily (32). The precision matrix

¥ ~1follows the Wishart distribution as shown in Eqoatb.

As we can see from the above equations, estimafidime risk in any site is conditional
on risks in neighboring locations. Subscriptsand k refer to a TAZ and its neighbor,
respectively, an# belongs to Nwhere N represents the set of neighbors of TiABesides the
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identification of neighbors, the assigned weighiso aaffect the risk estimation. In the past
studies (33-34), weight structures including vasiadjacency-based, distance-based models, and
semi-parametric geographically weighted, and sohave been explored. The current study
employs the commonly used distance-based strutdusgplore the spatial correlations with the
following formulation:

Wi = — (8)

Wherew; is the weight between TAZandj, andd; is the distance between TAZndj. With
this weight structure, it is known that more weage was assigned to TAZs which are relatively
closer.

Model 3: Multivariate Dirichlet process mixture

The parametric model specification of the aforenoer@d models assumed the distribution of the
parameters to be specific (normal in this studyps& all concerned sites. But the nonparametric
specification removes such constrains by emplowifigxible approach of Dirichlet process that
allows the incorporation of unknown random dengay the parameters. The current study
employs a semi-parametric approach which relaxegdhtrictive distributional assumption for
the intercept only, instead of all of the paranmgt&he removal of constraints for the intercept to
follow a specific distribution represents a plalsiscenario where the TAZs are not expected to
have a normal distribution. This flexible approashexpected to capture the extra variability
which may escape the error terms introduced inrpatiac models. Equation 2 was modified to
use Dirichlet process mixture over the intercepfiollews (26):

In(2;;) = Borj + XiB (9)
Borj = >, Pnlg, ~TDP (kGOj), z; = nwith probability of p, (20)
Go~MVN (g, 3) L1

Where B, is the intercept for cluster r (r ranges from 1QGp of mode jk is the precision
parameter, andi, is the baseline distribution fof,,which follows a multivariate normal
distribution with meanu;, and variancg, which also follows the Wishart distributiofi,.;
essentially represents a vector of probabilitiesrdiie space of concerned entities (203 TAZS)
and follows a Truncated Dirichlet Process (TDP)hwat vector of parameters represented by
kG,;. The precision parametkindicates the variability of the Dirichlet procem®undGy. The
intercept draws random poin#,() and the associated probabilities X can be obtained through
the stick-breaking procedure (28, 35). If one @us$ occupied, the indicator functiorng) at

8, will take the value of 1, otherwise it would beThe number of latent clusters) (n B,;
could range from 1 to infinity, which requires imnse computational effort. To reduce the
computational complexity by obtaining finite dimesal approximation, a truncated Dirichlet
process is utilized to fix the maximum number o$gble clusters t€, whereC is governed by
the precision paramet&rand is estimated byk%2 (28). As the prior distribution for precision
parametek was assumed to be~ uniform (0.3, 9), so eventually the number of t&us were
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limited to be maximum of 47. The value of C usedha study can be considered in a normal
range given the different C values utilized preegigisuch as 5 (36), 10 (37), and 52 (27).

Model 4: Multivariate Dirichlet process mixture spatial

Model 4 is distinct from Model 3 by incorporatinget spatial random effects to account for the

correlation among the neighboring TAZs. The moddtquation 9 takes the following form:
In(4;;) = Borj + XiB + w; (12)

Where all terms are defined as previously.

Comparison of Models based on Cross Validation
Many traditional approaches of cross-validation@@e to overestimation due to double usage

of data, once during model development and themdga model checking. The approach of
cross-validatory predictive densities was propadsethckle this issue (38) where the full set of
data was divided into two subsets (one subset éaeldpment and the other for checking).
However, the splitting of two subsets posed a m@ajoblem as the selection of different subsets
provides varying results. This was resolved by enmnting a CV-1 (leave-one-out) technique
to estimate the cross-validatory conditional pradécordinate (CPO) (39) which removed the
selection bias by employing a continuous approdcéelecting all data points, except one, for
model development and the left out data point tafywéhe prediction accuracy of the calibrated
model. Under the MCMC framework, the estimate ofOCRr each observation can be
calculated as:

_(1iyrT 1 -1
PO = (T t=1fm|ﬁ<f>>) (13)
WhereY; is theith observation (i = 1, 2, 3, . . ., n) for all 208Zs andp is the vector of

estimated model parameters. This harmonic meaerdity (CPO) may be extended to calculate
the goodness-of-fit of models by computing the paidf CPOs over all observations, which is
known as the pseudo marginal likelihood. For compomal convenience, the log pseudo
marginal likelihoods (LPML) is calculated:

LPML =Y, log(CPO;) (14)
The larger LPML value indicates a superior perfarogaassociated with the candidate model.

Evaluation Criteria for Predictive Accuracy
In this study, the four competing models were agaluated based on some criteria used from

previous studies: MSPE (mean-squared predictiver,e@3), the G statistic (40) , the ,E%
statistic (41), the Chi-squared Residual Sum ofa&g)(RSS, 42). The reader wishing more detail
on these measures can refer to these studies. gtadsdof each criterion are shown in the
following subsections.

MSPE
As indicated by the name, such criterion is relatéith the average squared deviations, or, the
predictive errors. Specifically, the MSPE was chdted as follows:

1
MSPE = %L1 (4 — ¥1)? (15)



w N -

00 N O U1 b~

10
11
12
13
14

15

16
17

18

19
20
21

22
23
24

25
26
27
28
29
30
31
32
33

Cheng et al. 8

Where/; is the Bayesian estimated crash frequency for zamkile y; is the observed crash
counts of the same zone. The smaller MSPE is pegferhich indicates a better prediction
performance.

RSS

MSPE is based on the deviations. A potential issaelarger estimated counts of one zone might
mask the smaller ones of multiple TAZs. To addriss issue, we also calculated the chi-
squared residual sum of squares to determine thiatue standardized by the the estimated

number of crash counts:
_vn Gi—y)?
RSS = XLy 5 (16)
The model with a smaller value of RSS tends to mawee predictive capabilties.

The R, statistic

The typical R-square in ordinary linear regressiannot be directly applied to the crash
frequency model due to the nonlinearity of conaisibmean (E[y{]) and heteroscedasticity
associated with the Poisson models. Therefore,doptad an equivalent measur@?,Favhich is
based on standardized residuals:

sp
R% =1- anl[yi—}]z

5

(17)

Wherey represents the mean value of the observed cdbintdar to R-square, a smaller
Ry>value indicates the inferior performance.

The G” statistic
The sum of modedeviances, & is zero for a model with perfect fit. Theé Qatistic is given as:

G2 =2 XL yilN () (18)

A large G deviating from zero indicates that the modelfit®rly as compared to the saturated
model.

DATA PREPARATION

Pedestrian and bicyclist crashes which occurraderCity of Irvine in the period of 2007-2012
were analyzed for the study. Like many other redeatudies 43-45) TAZs were selected as
the base units, and the crash data were aggregttied TAZ-level. Overall, there are 203 TAZs
in the City. The map in Figure 1 displays the dsttion of all TAZs and associated crash
counts. The two transportation mode-related craslesse collected from SWITRS (California
Statewide Integrated Traffic Records System) Shéjse of TAZ boundary and TAZ
characteristics were provided by SCAG (Southernf@ala Association of Governments).
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FIGURE 1 TAZ Map with Crash distributions in the City of Irvine, California.

The variables used for model development and tBecasted descriptive statistics are
shown in Table 1. The numbers of pedestrian angtlist crashes aggregated from 6 years were
used as the dependent variables. DVMT was utilethe exposure variable. The explanatory
variables were the predictors commonly used iniptsvregional safety analyses which include
socioeconomic, transportation-related, and enviemmnelated factors, and so on. In addition,
the distance matrix containing distances amongouarirAZ centroids were also collected from
SCAG for the estimation of distance-based spasiatlom effect. Since there are 203 TAZs in
the city, the matrix includes 203x202 distancesiidescriptive statistics can be found in Table
1 as well.

TABLE 1 Summary Statistics of Variables for TAZ's of the City of Irvine

Variables | Description Mean Std. Dev.| Min. Max.

Bike Total bike-involved 1.82 2.45 0 12
crashes (2007-2012)

Ped Total pedestrian-involved 0.81 1.33 0 8
crashes (2007-2012)

DVMT Daily vehicle miles 5,4262.44] 56,156.84| 112.57 | 276,079.90
traveled

Acre TAZ Area in acre 282.90 431.75 0.69 5,062.95

Median Median house income ($) 48,440/A9,635.10 0 183,347
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Pop_den Population density by area 6.18 7.96 0 032.4
HH_ den Household density by area 2.34 3.15 0 13.62
Emp_den Employment density by | 10.34 17.43 0 121.10
area
Ret den Retail job density 0.79 2.02 0 17.45
% age5 17 % of population age 5-17  8.64% 8.78% 0 7% 2
% age % of population age 18-2145.79% 7.42% 0 40%
18 24
% age % of population age 24-6438.35% 36.12% 0 95%
24 64
% age 65+ | % of population age 65 p6.25% 10.21% 0 83%
older
K12 K12 student enrollment 0.39 1.00 0 5.52
College College student 0.11 1.00 0 12.59
enrollment
Int34_den | Intersection density (3- | 0.12 0.12 0 0.62
and 4- legs)
BKINACC | Bike lane access (1=ifa | 0.92 0.28 0 1
TAZ has bike lane)
BL_den Bike lane density 3.40 1.80 0 7.26
Rail 1=at least one rail station 0.01 0.10 0 1
ina TAZ
TTbus D Total Bus Stop Density 0.05 0.09 0 0.53
Exbus_D Stop density for Express| 0.002 0.007 0 0.06
Bus and BRT
HFLbus D | High-Frequency Bus Stop0.001 0.004 0 0.03
Density (local bus
headway <= 20 mins)
WalkAcc Walk Accessibility 3.87 9.46 0 74.53
% Arterial | Percent of main arterial | 10.61% 17.33% 0 80%
(45-55mph) of TAZ
Distance Distance among TAZ 4.06 2.09 0.16 11.78
centroids (in miles)

RESULTS
The crash prediction models were estimated witHrd®ware statistical package WinBUGS (46)

which sampled the estimates by employing Markovi€Monte Carlo (MCMC) method. Two
out of four models were semiparametric which utitizhe Dirichlet process to allow flexibility
of the intercept for all entities. Such specifioatisupported the capability to incorporate infinite
parameters based on the desired flexibility, betttincated Dirichlet formulation was utilized
to limit the number of parameters in an effort &mluce immense computational complexity
associated with modeling of infinite parameters.todal of 10,000 MCMC iterations were
utilized for parameter estimation after discardiimgt 1,000 iterations as burn-in. The crash data
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for the two concerned modes fit the model spedificareasonably well as reflected by the small
number of iterations to reach convergence. The MGiM®@vergence was ensured by employing
different approaches such as visual inspectionigibty plots, trace plots, and Gelman-Rubin
diagram (47). Moreover, the accuracy of postenees ensured by recording the sample MC
errors to be less than 5% of the associated stdratasiations. In an effort to reduce the bias
induced in the model estimates due to the incotfmoraof correlated covariates, the Harrell

Miscellaneous package in R software was employedcédculation of Pearson correlation

coefficient. The covariates observed to be comdlaat a significance level of 0.05 were
subsequently eliminated with due considerationrevent exclusion of any potential influential

variables which would result in loss of precisidrestimated parameters.

Modeling Results
This study developed flexible models that accounf@dthe unobserved heterogeneity by

combining the strengths of incorporating multivegiapecification of dependency among crash
modes, spatial random effects for the impact ofimeoring TAZs, and Dirichlet process mixture

for random intercept. For comparison purposesnalliiels were developed over the multivariate
model which may be regarded as the base modelsterad the potential advantages of Dirichlet
models or inclusion of spatial random effects. Aevegn in Table 2, the posterior inferences for
influential factors for all four models demonstraleir robustness to fit the multimodal crash

data at the TAZ spatial scale. All four modelsefitdd out similar significant factors that affect

crash frequency for a particular mode. In the calsdicycle crashes, three variables were
observed to be statistically significant, namely:2Kkstudent enrollment, percentage of arterials,
and bike-lane density for the TAZ. The TAZs witlglher K12 student enrollment increases the
crash risk as the instances of interaction of Bistecwith other modes increases due to more
exposure. However, the similar positive correlafionbike-lane density seems counter-intuitive
since the presence of bike lanes is expected ibtdée more usage of bicycles due to lower

perceived risk of interaction with other modes. Tussible rationale for this finding may be

explained by the above expectation of lower pernitisk which may encourage bicyclists to

ride more in such areas, but the correspondingehnighances of the exposure of bicyclists to
vehicular traffic increase the crash risk. The miegarelationship among percentage of arterial
roads and bicycle crashes indicates that maybaithelists tend to travel less in areas with

more arterials. For the crashes pertaining to gedes, the college enroliment was also
observed to be influential, along with other thif@etors shared with bicycle crashes. The
increase in student population in the collegesAf§ was observed to be negatively linked with
pedestrian crashes, though the increased pedeattimty usually associated with the presence
of college students was expected to increase aesirrence. The probable justification may be
that the known presence of students influenced/éhécle drivers to be more cautious and drive
sensitively, or the vehicular activity may be miainn such areas which may help significantly
reduce the possibility of interaction with pedests. The common significant factors (K12

student enroliment, percentage of arterials, ahkeé-laine density) responsible for bicycle and
pedestrian crashes support the joint estimatiosuch modes which are most vulnerable and
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impacted by similar characteristics. As shown inbl€a3, the heterogeneity error term
demonstrated the presence of statistically sigmiticcorrelation among the bicycle and
pedestrian crashes which further justifies the eympkent of multivariate structure for joint
estimation of crashes. However, the spatial randdfact term exhibited the absence of a
significant correlation as indicated by the covacm matrix. It may be possible that the
explanatory variables incorporated for model dewelent were sufficiently robust to account
for the spatial characteristics that influence lerascurrence for the particular modes.

TABLE 2 Posterior Inference for Bicyclist and Pedesian-involved Crash counts

Count Type | Variables Model 1 Model 2 Model 3 Moded

Bicyclist Intercept -10.860 (0.243)| -10.880 (0.246)| -10.780 (0.248)| -10.790 (0.234)
% age 65+ | 1.532 (0.922) 1.467 (0.895 1.413 (0.830 1.401 (0.798)
K12 0.203 (0.088) 0.203 (0.091) 0.213 (0.079 0.210719)
College -0.013 (0.078) | -0.015 (0.077 -0.014 (0)07| -0.012 (0.075)
WalkAcc -0.007 (0.010) | -0.008 (0.010 -0.006 (@pP1| -0.007 (0.010)
% Arterial | -3.517 (0.674) | -3.529 (0.685) | -3.472 (0.691) | -3.399 (0.655)
BL_den 0.260 (0.056) | 0.271 (0.057) | 0.245 (0.056) | 0.246 (0.056)

Pedestrian Intercept | -12.390 (0.326)| -12.430 (0.3571) -12.360 (0.340).2.380 (0.346)
% age 65+ | 1.205 (1.145) 1.192 (1.101 1.097 (1.0741.131 (1.009)
K12 0.280 (0.104) | 0.280 (0.106) | 0.291 (0.095) | 0.291 (0.094)
College -0.976 (0.567) | -0.968 (0.563) | -0.962 (0.562) | -0.957 (0.558)
WalkAcc 0.009 (0.010) 0.008 (0.010) 0.010 (0.010) 0.009 (0.010)
% Arterial | -3.826 (0.989) | -3.805 (0.985) | -3.727 (0.991) | -3.658 (0.99¢
BL_den 0.384 (0.068) 0.397 (0.075) | 0.374 (0.069) 0.375 (0.074)

Notes: 1. Intercept for Dirichlet Process modetiaates the intercept mean from mixture points.
2. Refer to Tablel for detailed description of ahtés
3. Numbers in parentheses represent uncertaintgagst, or, posterior standard deviations
4. The statistically significant variable coeffiote are shown in bold.
5. Model 1: Multivariate; Model 2: Multivariate Sii; Model 3: Multivariate Dirichlet process mixty
Model 4: Multivariate Dirichlet process mixture $iph

TABLE 3 Covariance matrices for the Four Alternative Models

Models Modes Heterogeneity; { Spatial (i)
Bicycle Pedestrian Bicycle Pedestrian
Model 1| Bicycle 0.896 (0.166) 0.854 (0.166
Pedestrian  0.854 (0.166) 0.890 (0.237
Model 2| Bicycle 0.860 (0.168) 0.827 (0.153 0.001 (2.2810| 6.7x10° (1.5x10"
Pedestrian  0.827 (0.153) 0.856 (0.213) 6.7x10° (1.5x10” | 0.001 (2.2x10)
Model 3| Bicycle 0.602 (0.200) 0.538 (0.182
Pedestrian  0.538 (0.182) 0.561 (0.226
Model 4| Bicycle 0.507 (0.231) 0.461 (0.234 0.001 (2.1X)0| 7.4x10° (1.5x10"
Pedestrial  0.461 (0.234) 0.503 (0.270) 7.4x10° (1.5x10” | 0.001 (2.2x10)

Notes: 1. Numbers in parentheses represent pass¢aiodard deviations.
2. The statistically significant covariance valaes shown in bold.

3. Model 1: Multivariate; Model 2: Multivariate Sii; Model 3: Multivariate Dirichlet process mixty
Model 4: Multivariate Dirichlet process mixture $iph
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Evaluation Results
As previously stated, the four models were evatlidtem different perspectives using five

evaluation criteria. The conditional predictive ioate (CPO) was calculated to cross-validate
the crash estimates and eventually obtain LPML domparison of model fit. Unlike the
traditional parametric models which usually empDWC (deviance information criterion) for
model comparison, LPML was adopted in this studHS is not generated by the WinBUGS
due to its sensitivity to different parameterizago(28,43. The higher value of LPML is
desirable as it reflects relatively superior mofieproperty and a difference of more than 5
points among two competing models help identifyii@el of interest (49). As shown in Table
4, the LPML values of all four models were closewyh to not cross the threshold of 5 points
for identification of model of interest with superifit. However, the sample size also impacts
the numerical value of LPML. Hence it may be woriile to record the model with highest
LPML value and compare the observation with otlvtega. As evident from the evaluation
results, Model 3 demonstrated the best fit basedetative large LPML (-474.433), closely
followed by Model 4. A Similar trend was observexn &ll other criteria suggesting the strong
correlation among the capability of a model to diash data and its performance at crash
predictive accuracy.

Further inspection of the evaluation results reveghht the models which account for
spatial correlations (Models 2 and 4) have consibteinferior performance to those with
spatially structured heterogeneity (Models 1 and S)ich phenomenon suggests that the
inclusion of spatial correlation structures and ribgultant increased model complexity were not
compensated by expected advantage at crash poedi€tie potential reason might be due to the
insignificant spatial dependency among the two rhodshes as shown in Table 3. Clearly, the
Dirichlet models (Models 3 and 4) outperformed tim®-Dirichlet ones (Model 1 and 2) based
on all five criteria suggesting the use of suchxibke framework. Apart from the better
predictive accuracy and model fit, another advamtagsociated with Dirichlet models is the
capability to identify the presence of distinct gapulations. As shown in Figure 2, the kernel
posterior density plots of Dirichlet precision paterk illustrates the closeness of the peak
towards zero which reflects that the unknown dgn€¥) of non-parametric intercept is far from
the baseline distribution (& Similar plots for both Dirichlet models suggéiseir robustness
and indicate that the normal assumption of intdaragsociated with traditional parametric
models does not hold true for the TAZ level craskadet of the current study. These findings
also suggest the presence of distinct subpopukatomong the crash data which was confirmed
from the histogram of posterior number of latenistérs with a median of 2 clusters for most of
the data. This justifies the use of Dirichlet presenixture with flexible intercept as such model
specification helps more precise estimation leadimgbetter inferences. Contrary to the
parametric models which restrict the priors to ac#fic distribution fixed across all entities, the
latent clusters capture the multimodality due toamstrained nature.
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TABLE 4 Evaluation Results for Alternate Models
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Model LPML MSPE R,’ G’ RSS
Model 1 -476.753 0.690 0.786 177.995 272.367
Model 2 -477.492 0.691 0.781 179.544 278.749
Model 3 -474.433 0.682 0.823 169.137 225.018
Model 4 -474.831 0.687 0.823 169.998 225.291

Note: Model 1: Multivariate; Model 2: Multivariatgpatial; Model 3: Multivariate Dirichlet process
mixture; Model 4: Multivariate Dirichlet processxture spatial
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(b) Kernel Densities for Dirichlet without Spat{@odel 3)
FIGURE 2 Kernel Density Plots for Precision Parametr and Latent Clusters

CONCLUSIONS AND RECOMMENDATIONS

The current study contributes to the safety litmeatby proposing a multivariate Dirichlet
process mixture spatial model and comparing it$opmiance for crash predictions with other
three competing models. This study focuses on tteveatransportation at TAZ level by
developing a semi-parametric model that accountad tlie unobserved heterogeneity by
combining the strengths of incorporating multivegiapecification to accommodate correlation
among crash modes, spatial random effects forrtipact of neighboring TAZs, and Dirichlet
process mixture for random intercept. The presesdehstructure allowed the flexibility to infer
stochastic parameter from the crash data insteadpyéspecified distribution. Moreover, such
sophisticated structure also facilitates for idisdtion of latent subpopulations which may
escape the traditional parametric models. The Fanéwork allowed the flexibility to
accommodate the hierarchical structure and compterelations in the crash data to jointly
model pedestrian and bicycle crashes while accogidir the spatial correlations among TAZs.
All four models shared similar influential factossross both crash modes which indicated the
robustness of the models. For crashes pertainibicyeles, K12 student enrollment, percentage



O o0 NOOULID WN -

WWWWWWWWWWNNNNRNNNNNNRPRRERREPRRP R
OV D WNRPRPROOLONOATUDNWNROOONGOOUDWNIERO

40
41
42
43
44
45
46

Cheng et al. 15

of arterials, and bike-lane density for the TAZ eebserved to be statistically significant at the
95% confidence interval. Similar correlation amdaing concerned factors and pedestrian crashes
was observed which indicated the advantage of joideling due to similar influential factors
to the crash risk for the vulnerable modes. Thatpescorrelation of K12 student enrollment
with crash risk suggests the increased risk dubigber chances of physical interactions of
bicyclists/pedestrians with other modes due to nexposure. However, the perceived risk
appears to be the governing factor in the cas@sitipe correlation for bike-lane density, which
seems counter-intuitive. The possible explanatsaimat the lower perceived risk may encourage
bicyclists to ride more in such areas and thergietd higher chances of the exposure of
bicyclists to vehicular traffic. A negative corretaen was observed for percentage of arterial
roads and bicycle crashes which suggests lessderien of bicyclists to travel in areas with
more arterials, hence reducing the exposure talgesateractions. The pedestrian crashes were
observed to reduce with an increase in studentlptpn in the colleges of TAZs. Such fact may
be justified by the policies implemented in thessaa for reduced or null vehicular traffic which
eventually reduces the possibility of interactiotivpedestrians.

The heterogeneity error term demonstrated the pecesef statistically significant
correlation among the bicycle and pedestrian ckashieile the spatial random effect term
exhibited the absence of a significant correlatishich might explain why models considering
the spatial random effects did not yield the expgedvantages compared with their non-spatial
counterparts. In the comparison between Dirichted non-Dirichlet models, the former ones
were consistently superior to typical multivariabdes under all criteria. These findings
demonstrate the advantages associated with coasateof flexible approach, Dirichlet process
mixture in the current study, based on the goodoné$is and predictive accuracy of estimated
crash counts. Moreover, the Dirichlet models exbatbithe capability to identify the latent
distinct subpopulations and suggested the thatdhmal assumption of intercept associated with
traditional parametric models does not hold truetii® TAZ level crash dataset of the current
study. These findings justify the development ogbhgsticated flexible models which generate
more precise estimate due to the unrestrictive agmbr which eventually leads to better
inferences.

Based on the results, this study recommends carefidideration of spatial correlations
at the macro-level of TAZs as the accommodatiosuath correlation structures increased the
complexity without any significant advantage at mlofit or predictive accuracy. The authors
also recommend exploring other spatial levels drskove if the results of the current study hold
true or if the spatial random effects prove benafid-inally, the crash dataset utilized for model
development was aggregated for a six-year timeogeand future studies may incorporate
temporal correlations and adopt disaggregated aashts.
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