2016-2040 RTP/SCS
Aviation Demand Forecast,
Airport Ground Access Analysis,
and Aviation Economic Impact Analysis

Presentation to ATAC
The Team

SCAG PROJECT MANAGER
Ryan Hall

AECOM PROJECT MANAGER
Steve Greene

Aviation Forecasts
Ken Currie

Airport Capacity Constraints
Andrew Scanlon

Ground Access Analysis
Steve Greene

Model Trip Tables
Pat Coleman

Economic Impact Analysis
Sonjia Murray
Work Flow
Schedule

- Methodologies & Procedures: Summer '14
- Data Collection: Fall '14
- Ground Access Inventory: Winter '15
- Analysis of Airport Capacity Constraints: Spring '15
- Regional Aviation Demand Forecasts: Summer '15
- Ground Access Analysis: TODAY
- Regional Airport Economic Impact Analysis: TODAY
- Model Trip Tables: TODAY
- Aviation Element: TODAY
Aviation Forecasts

Top-Down

• Using regional economic and demographic trends to forecast overall regional demand
 o Population
 o Economic Growth

• Macro-economic techniques to understand demand in the region
 o **Overall regional** economic and demographic trends
 o **Specific sub-regional** economic and demographic activity
 – Income
 – Wealth
 – Economic output
Aviation Forecasts

Bottom-Up

• Micro-economic techniques to allocate demand within the region
 o Using historical activity and airport-specific factors to build up overall demand
 o Airline, airport, and other transportation services
 o Ground access and convenience

• Look at trends and activity in individual markets
 o California
 o Western Continental US (Short- & Medium-haul)
 o Domestic Long-haul (including Alaska, Hawaii, and U.S. Territories)
 o International (Canada, Caribbean & Latin America, Trans-Atlantic, and Trans-Pacific)
After top-down and bottom-up forecasts are complete, we compare and reconcile the two.

Currently, we’re just beginning the top-down regional analysis, while gathering data from you for the subsequent analyses.
Airport Capacity Constraints

Airfield constraints

- Based on the future airfield layout (2040) provided by the airports
- Estimate the annual service volume (ASV) according to the FAA Advisory Circular 150/5060-5 *Airport Capacity and Delay*
- Airfield capacity is estimated based on ASV and the pattern of each airport
Airport Capacity Constraints

Terminal constraints (# of gates)

- Based on the future terminal gate layout (2040) provided by the airports
- Estimate the maximum gate capacity by maximizing the usage of each gate (e.g., # of turns, seating capacity, and load factors)
Ground Access Analysis

Review 2012 RTP/SCS Project List
- Identify status of projects on list
- Review planned improvements with airports and other agencies (e.g., Metro, Caltrans)
- Coordinate with SCAG re 2016 RTP/SCS Project List

Identify deficiencies
- With input of airports
- Consider high-level solutions
Model Trip Tables

After overall demand has been allocated to airports, by subregion, use demographic data to allocate to TAZ level

• Deliver in two formats
 o Excel file
 o GISDK script/TransCAD trip tables

• Integration into RTP/SCS model
 o Possibly after mode choice to highway and transit assignment
 o Diurnal (time of day) factors from existing air passenger/TSA data

Bob Hope Airport Trip Distribution
Economic Impact Analysis

Demonstrate the impact of airports on economic activity in the region

- Review studies that have been done of individual airports and regionally
- Consolidate and demonstrate overall economic impact to region
Data Request

Aviation Data Needs Request for the 2016-2040 RTP/SCS

Please submit all documents to Mr. Ryan N. Hall, SCAG Aviation Specialist, by **September 30, 2014** in electronic format. Contact hall@scag.ca.gov or 213-236-1935 if you have any questions.

Capacity Analysis and Demand Forecasting Data Needs

- Existing airport layout plan, terminal layout plan, apron/gate layout showing the allocation of gates
- Busy day flight schedule (preferably 2012)
- Latest Airport Master Plan reports or similar technical study on capacity analysis
- Ultimate airport layout plan showing the runway configurations
- Ultimate aircraft parking plan with the terminal layout (showing the gate allocations for different airplane design group)
- Number of based aircraft
- Percentage of time in VFR, IFR and in different runway operation modes
- Traffic enplane/deplane statistics
 - Annually, for 2012 and previous years as available to 1990
- Aircraft operations
 - Annually, for 2012 and previous years as available to 1990
 - Broken down by passenger, cargo, and general aviation operations
- Cargo volume
 - Annually, for 2012 and previous years as available to 1990
- Any air passenger surveys that have been conducted for the airport
- Any aviation demand forecasts that your airport has prepared that you are able to share

Ground Access Data Needs

- Review and update of attached project list
- Any ground access studies or traffic impact assessments for the airport overall or planned projects

Economic Impact Analysis Data Needs

- Any economic impact analysis that have been conducted for the airport
Discussion
Key Tasks—Aviation Forecasts

- Airbus, Boeing and FAA Forecasts
- Historical Air Traffic Data
- Historical Socioeconomic and Demographic Data
- Forecasts of Socioeconomic and Demographic Trends
- Trend Forecasts
- Demand Allocation
- Econometric Models
- Airline Strategy and Development
- Baseline Projection
- Quantitative Risk Analysis
- Risk Factors
- Final Passenger and Cargo Forecasts
- Aircraft Movement Data
- Aircraft Movement Forecasts
- Airline Fleet Plans and Technology Trends
Forecast Probability Range

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual Passengers (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 0</td>
<td>10</td>
</tr>
<tr>
<td>Year 5</td>
<td>15</td>
</tr>
<tr>
<td>Year 10</td>
<td>20</td>
</tr>
<tr>
<td>Year 15</td>
<td>25</td>
</tr>
<tr>
<td>Year 20</td>
<td>30</td>
</tr>
</tbody>
</table>

- **Average**
- 25th / 75th Percentile Range
- 10th / 90th Percentile Range
- 5th / 95th Percentile Range
Year 10 Probability Distribution

Mean Value: 22.3 million passengers

Probability

Passenger Traffic (Millions)
Mode of Arrival—Survey vs Model

![Graph showing daily trips by district and mode for survey and APM data.]

The graph compares the mode of arrival for daily trips by district and mode for survey and APM data. The x-axis represents different districts, and the y-axis shows the number of daily trips. The graph includes a legend indicating the different modes of arrival such as dropoff, drive, rental, limo, taxi, on-call, and transit.