
On-Road Emissions Reductions and the Regional Comprehensive Goods Movement Plan – Background and Policy Questions

Presented to SCAG Regional Goods Movement Study
Steering Committee

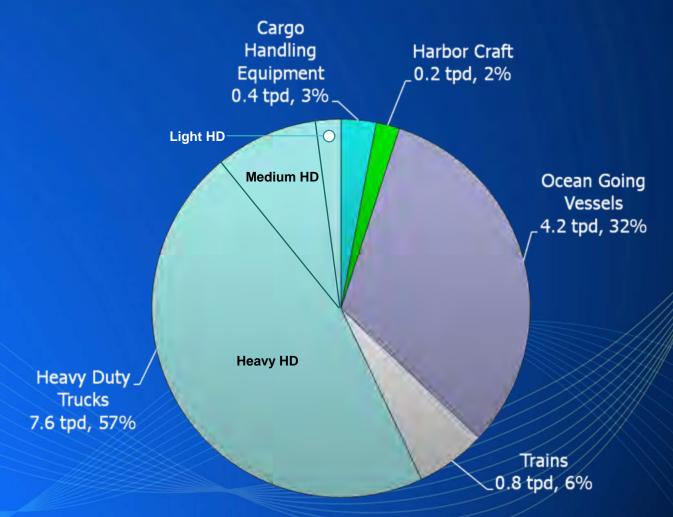
Tom Kear
Cambridge Systematics
December 9, 2010

Goods Movement Emissions as Percent of All Sources, South Coast Air Basin

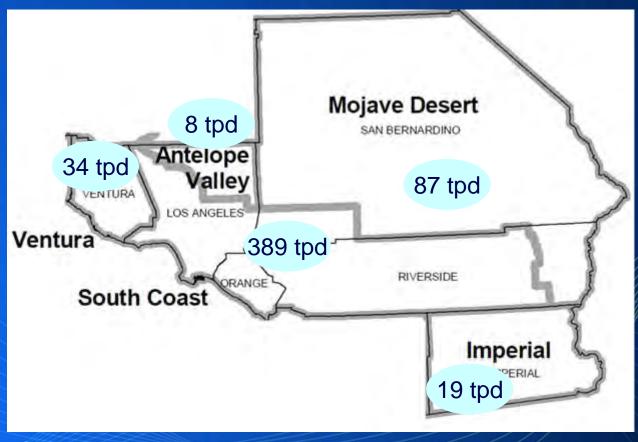
Source: South Coast AQMD, 2007 Air Quality Management Plan.

Discussion Scope & Purpose

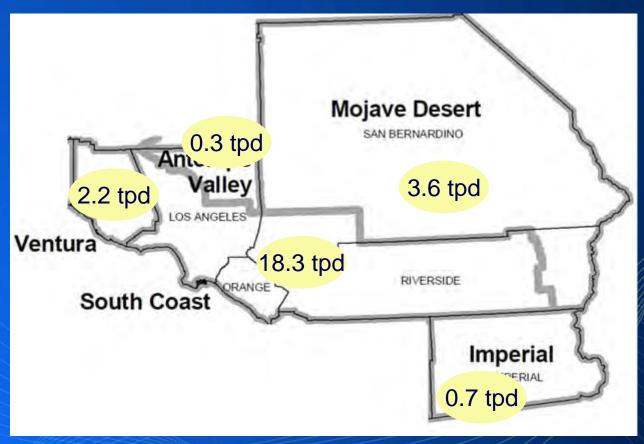
- Committee input: Policy on the interplay between zero emission trucks and RTP projects.
- Emission reductions from other modes are being considered but are not in today's discussion.
- Presentation Outline:
 - Current emissions, and major drivers of truck emissions in the future.
 - How can emission control strategies be incorporated into the goods movement plan?
 - Policy implications.



Current (2010) Goods Movement NO_x Emissions in South Coast Air Basin


Current (2010) Goods Movement PM_{2.5} Emissions in South Coast Air Basin

Source: ARB emission inventory data; OGV emissions from ARB ISOR for marine fuel rule.


Current (2010) Goods Movement NO_x Emissions in SCAG Air Districts

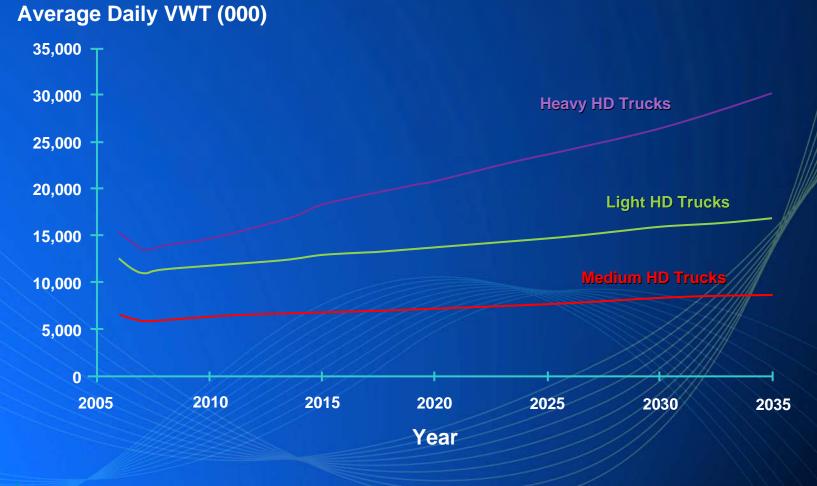
Source: ARB emission inventory data.

Current (2010) Goods Movement PM_{2.5} Emissions in SCAG Air Districts

Source: ARB emission inventory data.

Policy Implications

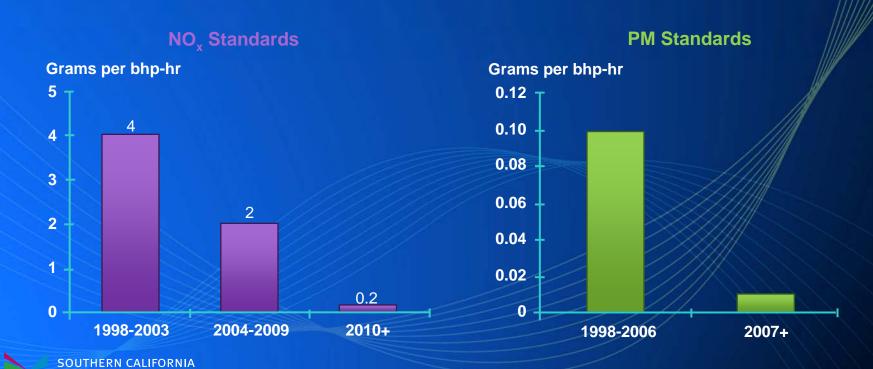
- Goods movement related emissions in the SCAB are key to the regions attainment strategy.
- What is the appropriate scope for emission mitigation in the goods movement plan:
 - Port Emissions will recognize existing strategies (i.e., the port CAAP). Should we go further?
 - Infrastructure projects benefiting one air basin vs. vehicle technology measures benefiting the region?
 - Others?



SOUTHERN CALIFORNIA

ASSOCIATION OF GOVERNMENTS

SCAG Region Truck VMT Projections

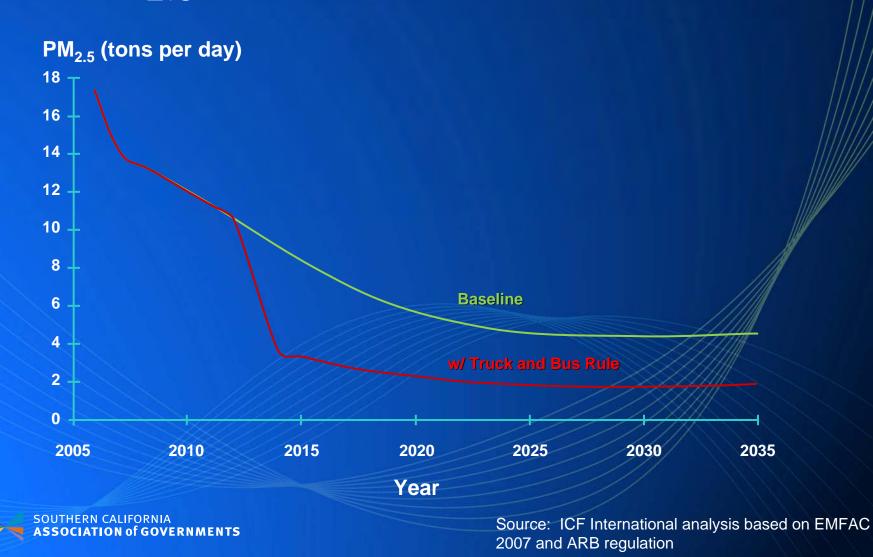


SOUTHERN CALIFORNIA

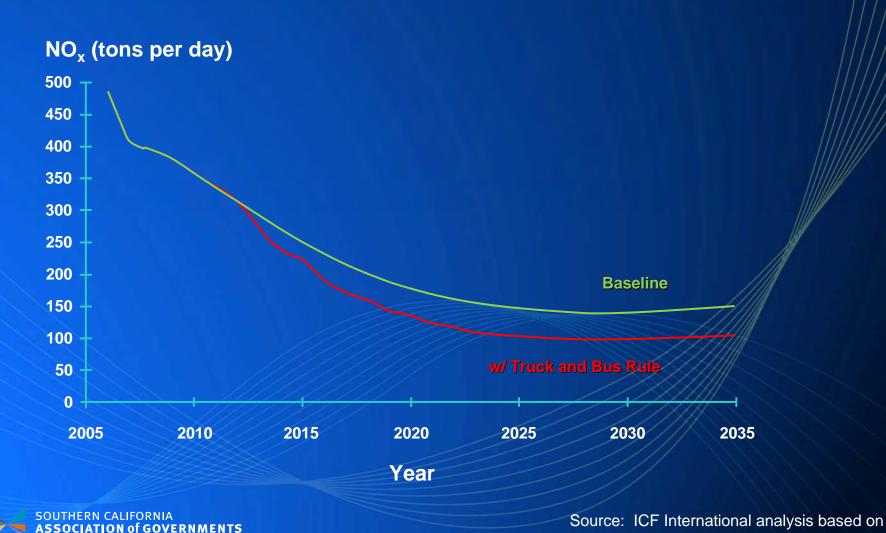
Source: EMFAC2007.

U.S. EPA Truck Emission Standards

 New 2010 trucks have 90 to 95 percent lower emissions than 2006 and older trucks


ARB In-Use Truck and Bus Rule

- Accelerates introduction of 2010-compliant trucks
- Applies only to trucks with GVW >14,000 lbs.
- Compliance schedule for trucks with GVW > 26,000


Existing Engine Model	Replace with 2010 Engine by:
1993 and older	January 1, 2015
1994-1995	January 1, 2016
1996-1997	January 1, 2017
1998-2000	January 1, 2020
2001-2004	January 1, 2021
2005-2006	January 1, 2022
2007-2009	January 1, 2023

Effect of In-Use Truck and Bus Rule on PM_{2.5}, SCAG Region

Effect of In-Use Truck and Bus Rule on NO_x, SCAG Region

EMFAC 2007 and ARB regulation.

Policy Consideration

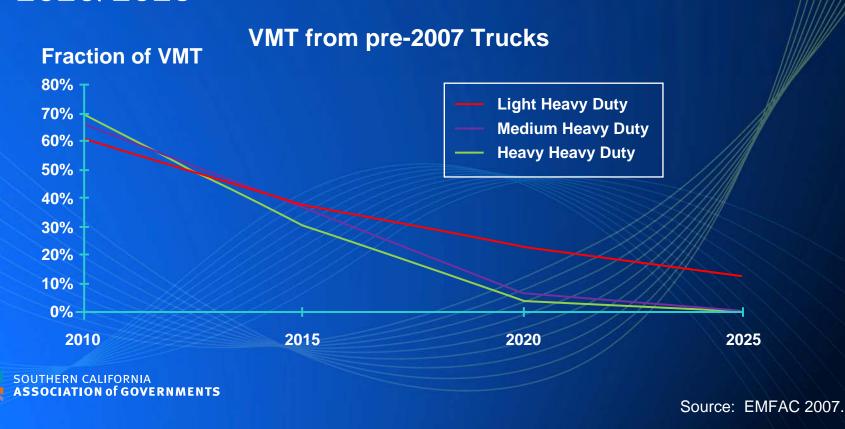
- 90-95% reduction in NO_x and PM_{2.5} emissions make many previous strategies less cost effective for mitigation.
- To what extent should the RTP mitigations consider cost effectiveness?

Trucks – Emission Reduction Options for 2025 and Beyond

SOUTHERN CALIFORNIA

ASSOCIATION OF GOVERNMENTS

Current Truck Emission Control Strategies


- Replacement with 2007/2010 truck
- Replacement with natural gas truck (similar to 2010 truck)
- Exhaust retrofits:

Technology	Typical Applicability	PM Reduction (minimun)	NO _x Reduction (minimum)
Diesel Oxidation Catalyst	1988-2002 Engines	25%	No Effect
Flow Thru Filter	1991-2002 engines and some 2003-2006 engines	50%	No Effect
Diesel Particulate Filter	1994-2006 engines	85%	No Effect
DPF+LNC	1993-2003 turbocharged engines	85%	25%

Current Truck Emission Control Strategies

 Current strategies will have little to no effect by 2020/2025

Potential Future Low Emission Truck Technologies

- Hybrid-electric drive
 - Parallel hybrid
 - Series hybrid
 - Other configurations
- Hydraulic hybrid
- Full battery electric
- Fuel cell vehicles
- Electric drive with overhead catenary system
- Electric drive with electromagnetic induction (power system in roadway)
- Electric drive with third rail power

How to Implement Low Emission Truck Technologies?

- Barriers (URS will discuss specific technologies)
 - Vehicle cost.
 - Limited performance (range, speed, load, charging time).
 - Highly dispersed ownership of trucks.
- Implementation mechanisms
 - Use of facility access to encourage purchase and use of low emission trucks (limited by fleet that must use those facilities).
 - Use of vehicle purchase incentives (limited by cost).

Facility Access Limitations – Ports and Yards

- Ports
 - SPB Port trucks account for 5 to 10 percent of total SCAB truck VMT and emissions (2008)

	All SCAB HDTs	SPB port Trucks	Percent
VMT/Average Weekday	21,863,585	1,175,979	5%
NO _x (tons/day)	231	20.9	9%
PM _{2.5} (tons/day)	7.6	0.5	7%

Intermodal yards– 9 major yards


SOUTHERN CALIFORNIA

ASSOCIATION of GOVERNMENTS

Source: Port of LA Air Emissions Inventory; Port of LB Air Emissions Inventory.

Facility Access Limitations – Highways

- Major N/S and E/W truck corridors
 - I-110, I-710, I-605, I-10, SR 60, SR 91, I-15, I-215

Accounts for ~20 percent of total SCAB truck VMT (2008)

	All SCAB HDTs	Thru Trucks on Major N/S and E/S Corridors	Percent
VMT/Weekday	21,863,585	3,670,000	17%

Truck Purchase Incentives

- Existing programs
 - Ports' Clean Truck Program
 - Carl Moyer Program
 - State and Federal tax incentives for alt fuel vehicles
- To have a significant impact, costs could be huge
 - More than 400,000 HDTs in SCAG region
 - More than 80,000 Class 8 trucks (HHDT)
 - Incremental costs may be \$50,000/vehicle, or much more

Policy Implications

- How should projects in the goods movement plan implement specific emission reduction strategies:
 - Access limitations to encourage adoption of specific technologies (i.e., electric trucks)?
 - Provide adequate right-of-way to subsequently build enabling infrastructure (i.e., ability to accommodate catenary power)?
 - Providing specific technologies under RTP projects (i.e., catenary power and funds to purchase trucks)?

Next Steps for Consultant Team

- Evaluate the effectiveness of truck and rail emission reduction strategies in 2023 and 2035
 - Identify goods movement markets/segments to target emission reduction strategies
 - Assess emissions impacts of selected infrastructure and operations strategies
 - Assess truck emission reduction strategies
 - Assess rail emission reduction strategies
 - Estimate cost to achieve target emission reductions in select market segments

Guidance Recap

- What is the appropriate scope for emission mitigation in the goods movement plan:
 - Port Emissions, or other sources not directly effected by the RTP, will recognize existing strategies (i.e., the port CAAP). Should we go further?
 - Infrastructure projects benefiting one air basin vs. vehicle technology measures benefiting the region?
 - Others?
- To what extent should the RTP mitigations consider cost effectiveness?

Guidance Recap (cont)

- How should projects in the goods movement plan implement specific emission reduction strategies:
 - Access limitations to encourage adoption of specific technologies (i.e., electric trucks)?
 - Provide adequate right-of-way to subsequently build enabling infrastructure (i.e., ability to accommodate catenary power)?
 - Providing specific technologies under RTP projects (i.e., catenary power and funds to purchase trucks)?

