Epidemic models for analysis of policy measures to protect COVID-19 at-risk populations in Los Angeles County

Abigail Horn
Research Associate, Divisions of Biostatistics and Health Behavior

Work with
Dave Conti
Professor of Biostatistics

Department of Preventive Medicine
University of Southern California

uscbiostats.github.io/COVID19
We develop epidemic models for analysis of policy measures to protect COVID-19 at-risk populations in Los Angeles County

Motivating research questions:

• How did the epidemic affect different at-risk populations?
• How effective were policies at preventing severe illness in at-risk populations?
Different types of COVID-19 at-risk populations

At higher risk of exposure and infection

- Social and socio-economic factors:
 - Household crowdedness
 - Employment and ability to work from home
 - Income and ability to protect oneself
 - Access to healthcare

At higher risk of severe illness given infection, i.e. of hospitalization and death

- Biological / health-related factors:
 - Age
 - Comorbidities
 - Obesity
 - History of smoking
Different types of COVID-19 at-risk populations

At higher risk of exposure and infection
- Social and socio-economic factors:
 - Household crowdedness
 - Employment and ability to work from home
 - Income and ability to protect oneself
 - Access to healthcare

At higher risk of severe illness given infection, i.e. of hospitalization and death
- Biological / health-related factors:
 - Age
 - Comorbidities
 - Obesity
 - History of smoking
Epidemic model + risk model for policy analysis

To analyze policies related to protecting populations at-risk of severe infection, we need two modeling pieces:

1. **Epidemic model** that estimates dynamics of infections, hospitalizations, and deaths

2. **Risk model** for estimating the probabilities of severe illness in different at-risk populations
To analyze policies related to protecting populations at-risk of severe infection, we need two modeling pieces:

1. **Epidemic model** that estimates dynamics of infections, hospitalizations, and deaths

2. **Risk model** for estimating the probabilities of severe illness in different at-risk populations
COMPARTMENT VARIABLES

S = Susceptible
E = Exposed
A = Infected/Undetected
I = Infected/Detected
H = Hospitalized
Q = ICU
D = Death
R = Recovered

Transition times
Fixed
parameters

\[\mu(t) \beta \]
\[r(t) \]
\[1-r(t) \]
\[\alpha(t) \]
\[1-\alpha(t) \]
\[\delta(t) \]
\[1-\delta(t) \]
\[1-\kappa(t) \]
\[\kappa(t) \]
\[1-\kappa(t) \]
Model compartment variable projections
Reproductive Number - $R(t)$

Graph showing changes in reproductive number $R(t)$ over time, with specific events and stages marked on the x-axis.

- Stage I
- Stage II
- Stage III: Modifications
- School Year
- Halloween
- Thanksgiving
- Christmas: New Years
- New Years
Time-varying infection fatality rate (IFR)

\[IFR = \frac{\text{deaths}}{\text{observed + unobserved infections}} \]
To analyze policies related to protecting populations at-risk of severe infection, we need two modeling pieces:

1. **Epidemic model** that estimates dynamics of infections, hospitalizations, and deaths

2. **Risk model** for estimating the probabilities of severe illness in different at-risk populations
Biological Risk Factors

- **Age** was categorized into five groups:
 - 0-19, 20-44, 45-64, and 65-79, and 80+.

- **Comorbidities**: diabetes, hypertension, chronic obstructive pulmonary disease (COPD), hepatitis B, coronary heart disease, stroke, cancer and chronic kidney disease.

- **Smoking**: Current smoking vs. none.

- **Obesity** was categorized as three groups:
 - $\text{BMI} < 30 \frac{kg}{m^2}$; $30 \leq \text{BMI} \leq 40 \frac{kg}{m^2}$; $\text{BMI} > 40 \frac{kg}{m^2}$
Categorizing the LA population into risk profiles

<table>
<thead>
<tr>
<th>Group</th>
<th>age</th>
<th>BMI</th>
<th>smoking</th>
<th>comorbidity</th>
<th>Pop.Prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk 2</td>
<td>65+</td>
<td>30<BMI<40</td>
<td>Non Smoker</td>
<td>Comorbidity</td>
<td>0.0110</td>
</tr>
<tr>
<td>Risk 3</td>
<td>65+</td>
<td>BMI<30</td>
<td>Non Smoker</td>
<td>Comorbidity</td>
<td>0.0699</td>
</tr>
<tr>
<td>Risk 3</td>
<td>45-64</td>
<td>BMI<30</td>
<td>Smoker</td>
<td>Comorbidity</td>
<td>0.0167</td>
</tr>
<tr>
<td>Risk 3</td>
<td>65+</td>
<td>BMI<30</td>
<td>Non Smoker</td>
<td>No Comorbidity</td>
<td>0.0254</td>
</tr>
<tr>
<td>Risk 3</td>
<td>45-64</td>
<td>30<BMI<40</td>
<td>Non Smoker</td>
<td>Comorbidity</td>
<td>0.0382</td>
</tr>
<tr>
<td>Risk 3</td>
<td>45-64</td>
<td>BMI<30</td>
<td>Smoker</td>
<td>No Comorbidity</td>
<td>0.0130</td>
</tr>
<tr>
<td>Risk 4</td>
<td>45-64</td>
<td>30<BMI<40</td>
<td>Non Smoker</td>
<td>No Comorbidity</td>
<td>0.0219</td>
</tr>
<tr>
<td>Risk 4</td>
<td>45-64</td>
<td>BMI<30</td>
<td>Non Smoker</td>
<td>Comorbidity</td>
<td>0.1510</td>
</tr>
<tr>
<td>Risk 4</td>
<td>20-44</td>
<td>BMI<30</td>
<td>Smoker</td>
<td>Comorbidity</td>
<td>0.0206</td>
</tr>
<tr>
<td>Risk 4</td>
<td>45-64</td>
<td>BMI<30</td>
<td>Non Smoker</td>
<td>No Comorbidity</td>
<td>0.1045</td>
</tr>
<tr>
<td>Risk 4</td>
<td>20-44</td>
<td>BMI<30</td>
<td>Smoker</td>
<td>No Comorbidity</td>
<td>0.0307</td>
</tr>
<tr>
<td>Risk 4</td>
<td>20-44</td>
<td>30<BMI<40</td>
<td>Non Smoker</td>
<td>Comorbidity</td>
<td>0.0238</td>
</tr>
<tr>
<td>Risk 5</td>
<td>20-44</td>
<td>30<BMI<40</td>
<td>Non Smoker</td>
<td>No Comorbidity</td>
<td>0.0240</td>
</tr>
<tr>
<td>Risk 5</td>
<td>20-44</td>
<td>BMI<30</td>
<td>Non Smoker</td>
<td>Comorbidity</td>
<td>0.1055</td>
</tr>
<tr>
<td>Risk 5</td>
<td>20-44</td>
<td>BMI<30</td>
<td>Non Smoker</td>
<td>No Comorbidity</td>
<td>0.1401</td>
</tr>
<tr>
<td>Risk 5</td>
<td>0-19</td>
<td>BMI<30</td>
<td>Non Smoker</td>
<td>No Comorbidity</td>
<td>0.1463</td>
</tr>
</tbody>
</table>
Categorizing the LA population into risk profiles

| Group | age | BMI | smoking | comorbidity | Pop.Prev | P(H|I).May.15 |
|-------|-------|-----------|-------------|-------------|----------|-------------|
| Risk 2| 65+ | 30<BM<40 | Non Smoker | Comorbidity | 0.0110 | 0.2626 |
| Risk 3| 65+ | BM<30 | Non Smoker | Comorbidity | 0.0699 | 0.1635 |
| Risk 3| 45-64 | BM<30 | Smoker | Comorbidity | 0.0167 | 0.1690 |
| Risk 3| 65+ | BM<30 | Non Smoker | No Comorbidity | 0.0254 | 0.1148 |
| Risk 3| 45-64 | 30<BM<40 | Non Smoker | Comorbidity | 0.0382 | 0.1733 |
| Risk 3| 45-64 | BM<30 | Smoker | No Comorbidity | 0.0130 | 0.1189 |
| Risk 4| 45-64 | 30<BM<40 | Non Smoker | No Comorbidity | 0.0219 | 0.1221 |
| Risk 4| 45-64 | BM<30 | Non Smoker | Comorbidity | 0.1510 | 0.1031 |
| Risk 4| 20-44 | BM<30 | Smoker | Comorbidity | 0.0206 | 0.1069 |
| Risk 4| 45-64 | BM<30 | Non Smoker | No Comorbidity | 0.1045 | 0.0709 |
| Risk 4| 20-44 | BM<30 | Smoker | No Comorbidity | 0.0307 | 0.0736 |
| Risk 4| 20-44 | 30<BM<40 | Non Smoker | Comorbidity | 0.0238 | 0.1098 |
| Risk 5| 20-44 | 30<BM<40 | Non Smoker | No Comorbidity | 0.0240 | 0.0757 |
| Risk 5| 20-44 | BM<30 | Non Smoker | Comorbidity | 0.1055 | 0.0634 |
| Risk 5| 20-44 | BM<30 | Non Smoker | No Comorbidity | 0.1401 | 0.0430 |
| Risk 5| 0-19 | BM<30 | Non Smoker | No Comorbidity | 0.1463 | 0.0163 |
IFR varies widely across risk profiles within age groups

Scenario analysis: 1st and 2nd Epidemic Waves, March – October, 2020
Policies evaluated:
More moderate intervention via modifying $R(t)$
Policies evaluated:
Protection of at-risk populations

No (direct) protection of at-risk groups
• What actually happened

Protect those > 65 years old
• 17% of the LAC population

Protect those >65 years old AND/OR with highest health risk factors
• ~35% of the LAC population
Counterfactual Scenario Results

<table>
<thead>
<tr>
<th>More moderate Lockdown</th>
<th>Observed Lockdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>No protection</td>
<td>No protection</td>
</tr>
<tr>
<td>Protect 65+</td>
<td>Protect 65+</td>
</tr>
<tr>
<td>65+ AND risks</td>
<td>65+ AND risks</td>
</tr>
</tbody>
</table>

- Deaths
- In Hospital
- Infected

Actual interventions
1st and 2nd wave analysis – what went right

The strict initial lockdown period in LAC was effective because it both **reduced overall transmission** and **protected individuals at greater risk**

Moderate interventions + protection of 65+ alone would have overwhelmed healthcare capacity and doubled the death count
But what about the major 3rd epidemic wave?
November 2020 – February 2021
3rd wave dynamics:
Driven by major disparities in risk of infection
Different types of COVID-19 at-risk populations

At higher risk of exposure and infection
- Social and socio-economic factors:
 - Household crowdedness
 - Employment and ability to work from home
 - Income and ability to protect oneself
 - Access to healthcare

At higher risk of severe illness given infection, i.e. of hospitalization and death
- Biological / health-related factors:
 - Age
 - Comorbidities
 - Obesity
 - History of smoking
The Team

• USC Department of Preventive Medicine
 • Lai Jiang, MS Biostatistics PhD Candidate
 • Emil Hvitfeldt, MS Research Programmer
 • Wendy Cozen, DO, MPH Professor of Preventive Medicine
 • Kayla de la Haye Assistant Professor of Preventive Medicine

• USC School of Public Policy
 • Neeraj Sood, Professor and Vice Dean of Research

• Los Angeles County Department of Public Health (LACDPH)
 • Paul Simon, MD, MPH, Chief Science Officer
 • Will Nicholas, PhD, MPH Director, Center for Health Impact Evaluation, LACDPH
 • Faith Washburn, MPH Epidemiology Analyst
Big mobility data:
Informs risk of infection by neighborhood

- Big data from geolocation traces on smartphone devices

- A large and representative population sample (10% of US population)

- Spatial measures of:
 - Population able to stay at home
 - Population traveling in to work

- Aggregated individual-level patterns across neighborhoods
Measures from mobility data: who is able to stay at home

COVID-19 Incidence Rate

Population staying at home (ratio difference from pre-pandemic)
Measures from mobility data – by neighborhood

COVID-19 7-day Crude Incidence Rate

Population able to stay at home

Crude Incidence Rate per 100,000

- 0 – 50
- 50 – 100
- 100 – 200
- 200 – 400
- 400 – 600
- 600 – 800
- 800 – 1,000
- 1,000 – 2,000
- 2,000 – 4,000
- 4,000 – 8,000
- 8,000 – 10,000

Ratio increase in stay-at-home proportion

- 0.0 – 1.0
- 1.0 – 1.5
- 1.5 – 2.0
- 2.0 – 2.5
- 2.5 – 3.0
- 3.0 – 3.5
- 3.5 – 4.0
- 4.0 – 4.5
- 4.5 – 5.0
- 5.0 – 10.0
Next steps:
Investigating 3rd wave with neighborhood model

Use the neighborhood model to do scenario analysis on the 3rd wave to investigate:

- How effective were policy measures to protect different populations from infection, hospitalization, and death?
- What would things have looked like if we had done a greater job to help more people stay at home or not go to work if sick?
Mobility data informing contact rates

• Incorporate mobility data. Ongoing.

(Ratio increase in staying at home, relative to pre-pandemic baseline)
Counterfactual Scenario Results

More moderate Lockdown

- No protection
- Protect 65+
- 65+ AND risks

Observed Lockdown

- No protection
- Protect 65+
- 65+ AND risks

Actual interventions

Horn et al. 2021, MedarXiv.