Building the LA County MATSim Model for the Analysis of Shared Mobility Modes

Caroline Rodier, ITS, UC Davis
Huajun Chai, ITS, UC Davis
Ihab Kaddoura, TU Berlin
Outline

1) Introduction (Caroline)
2) MATSim overview (Ihab)
3) Building the LA model (Huajun/Ihab)
4) How to access and run the model yourself! (Ihab/Huajun)
MATSim Overview

MATSim = Multi-Agent Transport Simulation

Key features:

- **Agent-based**: Simulates vehicle and individuals in household context
- **Dynamic**: Entire day, traffic congestion, attributes of drivers and passengers
- **Activity-based**: Travel demand based on individual activity patterns
- **Multi-modal**: Cars, public transit, bicycles, demand responsive transit, ...
- Allows for **large-scale** simulations (city, region)
- **Modular** approach: Several extensions (taxis, MaaS, congestion pricing, ...)
- **Open-source** (https://github.com/matsim-org) + Active community
MATSim Community

- Active community: regular developer and user meetings
- (Main) developers: TU Berlin, ETH Zürich, Senozon, ... and several others
- Software developed, maintained and extended for more than 10 years
- Several applications world wide

For more information, see www.matsim.org
- MATSim Book
- Tutorials
- User Guide
- Q&A
- Community pages
- ...
MATSim: How it works

Plan Modification / Plan Selection

Iterative Approach: Physical and Cognitive

Plan Scoring

Input

Output

Network, Public transit schedule, ...

Daily plans, person attributes, ...

Home (dep: 06:43)
trip (car)

Work (dep: 16:04)
trip (car)

Shopping (dep: 18:04)
trip (car)

Home

Home (dep: 12:42)
trip (bike)

Shopping (dep: 14:05)
trip (bike)

Home
Build the LA County MATSim model
Network Generation

MATSim Converter
- OpenStreetMap data
- Zone based parking cost data
- Transit GTFS

LA County (Higher Resolution)
- LA SCAG MATSim Network with network attributes
- Transit Vehicle Fleets with Transit Schedules
- LA DOT GTFS
- LA Metro GTFS
- Metrolink GTFS
- LA GO GTFS

The rest SCAG region (Lower Resolution)
Road Network
Population Activity Generation

MATSim Converter
- SCAG ABM Disaggregated Trips/Household/Person Info
- SCAG Freight ODs
- SCAG Tier1/Tier2 Transportation Analysis Zones

Persons with daily activity chain and inter-activity travel modes

LA-SCAG MATSim Population (Travel Demand)

Trucks trips

MATSim Converter
- Plan selected: yes
 - Activity: home_36600, x=219308.77924934198, y=-492202.6918447277
 - End time: 06:15:00
 - Leg: car, travel time: 00:14:01
 - Activity: work_34200, x=217258.84632072653, y=-481509.10106846545
 - End time: 11:57:20
 - Leg: car, travel time: 00:13:50
 - Activity: eatout_2400, x=216306.4814485427, y=-479166.1510645319
 - Max duration: 00:36:30
 - Leg: car, travel time: 00:15:56
 - Activity: home_36600, x=219308.77924934198, y=-492202.6918447277

Duration: 00:36:30

Home 06:15:00

Work 11:57:20

Eatout Duration: 00:36:30
Person Attributes

- Taken from the person / household data in the SCAG abm
- For person-specific policy investigations
- For income-dependent utility parameters
 - income above average → marginal utility of money < 1.0
 - income = average → marginal utility of money = 1.0 (1 $ = 1 utility unit)
 - income below average → marginal utility of money > 1.0

```
<person id="10000099">
  <attributes>
    <attribute name="ESR" class="java.lang.String">0</attribute>
    <attribute name="age" class="java.lang.String">3</attribute>
    <attribute name="eduatt" class="java.lang.String">1</attribute>
    <attribute name="gender" class="java.lang.String">male</attribute>
    <attribute name="hhinc" class="java.lang.String">22700</attribute>
    <attribute name="hnumautos" class="java.lang.String">1</attribute>
    <attribute name="hhsiz" class="java.lang.String">3</attribute>
    <attribute name="householdId" class="java.lang.String">3247023</attribute>
    <attribute name="htype" class="java.lang.String">Multiple</attribute>
    <attribute name="marginalUtilityOfMoney" class="java.lang.Double">4.673641850220264</attribute>
    <attribute name="race" class="java.lang.String">NHAS</attribute>
    <attribute name="schg" class="java.lang.String">0</attribute>
    <attribute name="subpopulation" class="java.lang.String">person</attribute>
    <attribute name="ten" class="java.lang.String">3</attribute>
    <attribute name="wkind20" class="java.lang.String">0</attribute>
    <attribute name="woccc24" class="java.lang.String">0</attribute>
    <attribute name="worker" class="java.lang.String">unemployed</attribute>
  </attributes>
```
1. Model overview

<table>
<thead>
<tr>
<th>%</th>
<th># of household</th>
<th># of agents</th>
<th># of trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original SCAG ABM Model</td>
<td>6,180,962</td>
<td>18,682,684</td>
<td>71,126,268</td>
</tr>
<tr>
<td>1%</td>
<td>183,307</td>
<td>186,637</td>
<td>708,219</td>
</tr>
<tr>
<td>5%</td>
<td>857,668</td>
<td>934,398</td>
<td>3,552,392</td>
</tr>
<tr>
<td>10%</td>
<td>1,582,433</td>
<td>1,867,724</td>
<td>7,104,799</td>
</tr>
<tr>
<td>25%</td>
<td>3,191,734</td>
<td>4,669,729</td>
<td>17,770,662</td>
</tr>
<tr>
<td>100%</td>
<td>6,180,962</td>
<td>18,682,684</td>
<td>71,126,268</td>
</tr>
</tbody>
</table>

2. Supported Modes

- **Base case:** Car, Public Transit, Ride, Bike, Freight, Walk, Ride_taxi, Ride_schoolbus
- **Scenario case:** Ride-Hailing
 - Single and multi passenger
 - Automated and Non-automated
 - Fares
Model Calibration: Mode Share

- Transport users’ choice dimensions:
 ● Route choice
 ● Mode choice
 ● Departure time choice

- Adjusted parameters:
 ● Alternative-specific constants
 ● Marginal disutility of traveling
 ● Daily utility constants
Model calibration: Link volumes

- Link volumes at certain count stations are calibrated towards “ground truth” values.
- We use several volume count data sources, including

 ● SCAG screenline data (Blue dots)
 ○ Mainly on local roads
 ○ Total stations: 72

 ● PEMS freeway count station data (The rest dots)
 ○ Mainly on freeways
 ○ Total stations: 445

Background Map: OpenStreetMap
Visualization of Simulated Activities

- blue = home
- red = work
- yellow = leisure/shopping
- green = education
Visualization of Simulated Vehicles
Visualization of Public Transit Vehicles
Run the model yourself!

https://github.com/matsim-scenarios/matsim-los-angeles

1) Download the project
2) Execute the runnable jar file (double click or “java -jar matsim-los-angeles-v1.1-jar-with-dependencies.jar”)
3) GUI: Choose a configuration file from ./scenarios/los-angeles-v1.1/input/... and “Start MATSim”

Or clone the project and run the JAVA run class from your IDE.
Outlook

- Multi-modal policy investigations + detailed analysis (person-specific, spatial and temporal high resolution)
- Autonomous ride-hailing services in the West Side Cities Area (MATSim extensions: dvrp, av, drt)
- Road pricing concepts (MATSim extensions: roadPricing, decongestion)
- Submitted SGC proposal to add one-way carsharing with BlueLA user data to explore concepts for planned expansion
- Submitted UC SB 1 proposal to use LA County MATSIM model to simulate contact human frequency, duration, and intensity patterns for a COVID-19 virus infection dynamic model with USC’s School of Medicine
Thank you!

Acknowledgements

We are grateful to the Southern California Association of Governments (http://www.scag.ca.gov/) for supporting this model developing effort with data and staff time. We are also grateful to the California Department of Transportation (https://dot.ca.gov) for funding this research through their sustainable planning grant programs.