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ABSTRACT 
The advent of microsimulation approaches in travel demand modeling, wherein activity-travel 
patterns of individual travelers are simulated in time and space, has motivated the development 
of synthetic population generators.  These generators typically use census-based marginal 
distributions on household attributes to generate joint distributions on variables of interest using 
standard iterative proportional fitting (IPF) procedures.  Households are then randomly drawn 
from an available sample in accordance with the joint distribution such that household-level 
attributes are matched perfectly.  However, these traditional procedures do not control for 
person-level attributes and joint distributions of personal characteristics.  In this paper, a 
heuristic approach, called the Iterative Proportional Updating (IPU) algorithm, is presented to 
generate synthetic populations whereby both household-level and person-level characteristics of 
interest can be matched in a computationally efficient manner.  The algorithm involves 
iteratively adjusting and reallocating weights among households of a certain type (cell in the 
joint distribution) until both household and person-level attributes are matched.  The algorithm is 
illustrated with a small example, and then demonstrated in the context of a real-world application 
using small geographies (blockgroups) in the Maricopa County of Arizona in the United States.  
The algorithm is found to perform very well, both from the standpoint of matching household 
and person-level distributions and computation time.  It appears that the proposed algorithm 
holds promise to serve as a practical population synthesis procedure in the context of activity-
based microsimulation modeling.    
 
 
Keywords:  synthetic population, population generator, heuristic algorithm, iterative proportional 
fitting, iterative proportional updating, travel demand forecasting, activity based modeling, 
microsimulation 
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INTRODUCTION 
The emergence of activity-based microsimulation model systems has ushered in a new era in 
travel demand forecasting.  Activity-based approaches to travel demand explicitly recognize that 
travel demand is a derived demand, where individuals travel to undertake activities that are 
distributed in time and space.  The behavioral unit considered in activity-based approaches is the 
individual traveler, thus leading to microsimulation model systems that are capable of simulating 
activity-travel patterns of individual persons over the course of a day.  Recent examples of full-
fledged activity-based microsimulation model systems include AMOS (Kitamura and Fujii, 
1998), FAMOS (Pendyala et al., 2005), CEMDAP (Bhat et al., 2004), ALBATROSS (Arentze 
and Timmermans, 2004), and TASHA (Miller and Roorda, 2003).  In addition to these model 
systems, various tour-based model systems that also simulate activity-travel patterns at the level 
of the individual traveler are being implemented in several urban areas around the United States, 
including (but not limited to) San Francisco, New York, Columbus, Denver, Atlanta, Tampa 
Bay, and Puget Sound (Vovsha et al., 2005). Even if the underlying behavioral paradigms differ 
across model systems, the common element is that they all simulate activity-travel patterns at the 
level of the individual traveler while attempting to explicitly recognize the role of spatio-
temporal constraints, time use allocation, and agent interactions (e.g., interactions among 
household members, interactions among activities and trips).  For these reasons, activity-based 
and tour-based model systems are considered to provide robust behavioral frameworks for 
analyzing travel demand under a wide variety of modal and policy contexts.   

As activity-based microsimulation model systems operate at the level of the individual 
traveler, one needs household and person attribute information for the entire population in a 
region to calibrate, validate, and apply (in a forecasting mode) such model systems.  However, 
such information is virtually never available at the disaggregate level for an entire region.  In the 
base year, one may have disaggregate household and person information for a random sample of 
households.  Such information may be available from a census (for example, in the United 
States, such data is available through the Public Use Microdata Sample or PUMS) or from a 
traditional activity-travel survey that may have been conducted by the planning agency in a 
region.  The challenge in activity-based modeling, then, is to generate a complete synthetic 
population with comprehensive data on attributes of interest.  The activity-based model system 
can then be applied to the synthetic population to forecast travel demand at the level of the 
individual traveler. 

Synthetic populations can be formed from the random samples by choosing or selecting 
households and persons from the random samples such that the joint distribution of the critical 
attributes of interest in the synthetic population match known aggregate distributions of 
household and person attributes available through a Census.  For example, in the United States, 
marginal distributions of population characteristics are readily available from Census Summary 
Files (SF) for any region. For some combinations of critical variables, the Census Summary Files 
may also directly provide joint distributions against which synthetic population joint 
distributions can be matched.  However, more often than not, such joint distributions of critical 
attributes of interest are not directly available and the analyst must generate these joint 
distributions from the known marginal distributions of interest.  

The joint distributions among a set of control variables can be estimated using the well-
known Iterative Proportional Fitting (IPF) procedure.  The iterative procedure was first presented 
by Deming and Stephan (1941) in the context of adjusting sample frequency tables to match 
known marginal distributions and further refined by Fienberg (1970) and Ireland and Kullback 
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(1968).  Wong (1992) showed that the IPF procedure yields the maximum entropy estimates of 
the joint distribution under the constraints of the given marginal distributions.  Beckman et al. 
(1996) used the iterative procedure to estimate joint distributions of household attributes.  
Sample frequency tables used in the study were generated from Public Use Microdata Sample 
(PUMS) data using critical household attributes, for which marginal distributions were available 
from the Census Summary Files.  Synthetic households were then generated by randomly 
drawing households from the PUMS according to the estimated joint distributions.  The synthetic 
population then consisted of all persons from the selected households.  While this procedure 
ensured that household attributes in the synthetic population closed matched the iteratively 
determined joint distributions, it did not have any mechanism to ensure that such consistency 
existed for the person attributes of interest (e.g., age, race, gender, ethnicity, employment status).  
As a result, distributions of person attributes fail to match the known distributions of person 
characteristics from the Census Summary Files.  In general, this is the approach that has been 
adopted in tour-based and activity-based model development efforts around the world.   

This is not to say that this problem has gone unnoticed.  Guo and Bhat (2007) propose an 
algorithm that can be used to generate synthetic populations where the household-level joint 
distributions are close to those estimated using the conventional IPF procedure, while 
simultaneously improving the fit of person-level distributions.  Arentze et al. (2007) propose a 
method using relation matrices to convert distributions of individuals to distributions of 
households such that marginal distributions can be controlled at the person-level as well. This 
paper intends to further build on their work by presenting a practical heuristic approach for 
generating synthetic populations while simultaneously controlling for both household and person 
attributes of interest.   

There are two primary factors motivating this paper.  First, it is desirable to have an approach 
where both household-level and person-level distributions can be matched as closely as possible 
in a synthetic population generator.  Second, it is desirable to have an approach that is practical 
from an implementation and computational standpoint.  Synthetic population generators need to 
generate populations for small geographies, at the level of the traffic analysis zone (TAZ), census 
tract, blockgroup, or block.  As there are several thousand small geographies in any region, the 
algorithm must be computationally efficient to be practical and have reasonable run times.  
Although computational burden may not be a consideration from a theoretical standpoint in this 
era of parallel computing and ever-faster machines, it remains a practical consideration for many 
agencies that want the ease and flexibility of running a population synthesizer on a single 
desktop computer.  

The next section of the paper describes the algorithm in detail.  The third section offers a 
discussion of key issues encountered in the generation of synthetic populations.  The fourth 
section presents real-world examples where the proposed approach has been applied to two small 
geographies (blockgroups) in the Maricopa County region of Arizona. Results of the case study 
examples are furnished in this section.  The fifth and final section presents concluding thoughts.   
 
THE PROPOSED ALGORITHM 
This section presents a detailed description of the proposed algorithm.  First, a simple example is 
presented to illustrate how the algorithm works.  Then, a geometric interpretation of the 
algorithm is presented.  Finally, a step-by-step procedure for implementing the general iterative 
proportional updating algorithm is offered in this section.  
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An Example to Illustrate the Algorithm 
The traditional IPF procedure that lies at the heart of most synthetic population generators 
involves the estimation of household and person level joint distributions that match the given 
household and person level marginal frequency distributions.  This procedure will naturally 
result in two different sets of weights, one set for matching household distributions and one set 
for matching person-level distributions.  Except under extremely unrealistic conditions, 
household weights will never match person weights.  As a result, a synthetic population that is 
generated based on the application of household weights will yield joint distributions of person 
attributes that do not match the given person-level marginal distributions.  This is because the 
traditional procedure involves simply selecting all persons in the chosen households according to 
the household weights.  In other words, the person weights are forced to be equal to the 
corresponding household weights, when in fact they are different.   The desire to generate a 
synthetic population whereby both household and person-level attribute distributions are 
matched against known marginal distributions is one of the primary motivating factors for this 
paper.  

The inconsistency in person-level distributions can be reduced if the household weights are 
adjusted based on the person weights obtained from the IPF procedure.  The process by which 
this can be accomplished is best illustrated with the help of a small numerical example.  The 
algorithm begins by creating a frequency matrix D (Table 1).  A row in the matrix corresponds to 
a single household record and provides data describing the composition of the household.  For 
example, the first household is of type 1 and has one individual each of person types 1, 2, and 3.  
There are two household types and three person types considered in this example.  The 
household types may be defined by such variables as household size or income.  The person 
types may be described by such variables as age, race, and gender.  In this example, there are 
eight households with 23 individuals.  All initial household weights are set to unity as shown in 
the Table.  The row titled “weighted sum” represents the sum of each column weighted by the 
“weights” column.  The “constraints” row provides the frequency distribution of the household 
and person types that must be matched.  The rows titled δa and δb provide the absolute value of 
the relative difference between the weighted sum and the given constraints so that the “goodness-
of-fit” of the algorithm can be assessed at each stage of the algorithm and convergence criteria 
can be set.  The data structure shown in the table can be used to formulate a mathematical 
optimization problem in which one desires to calibrate weights such that the weighted sum 
equals or nearly equals the given frequency distribution.  The mathematical optimization 
problem takes the following form depending on the form of the objective function that is 
adopted: 
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subject to wi ≥ 0,    
where  i denotes a household (i = 1, 2, ..., 8) 

j denotes the constraint or population characteristic of interest (j = 1, 2, ..., 5) 
di,j represents the frequency of the population characteristic (household/person type) j in 

household i 
wi is the weight attributed to the ith household  
cj is the value of the population characteristic j. 
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The objective functions to be minimized represent different measures of inconsistency between 
the weighted frequency of the household/person type and the given frequency distribution 
constraints that need to be met.  It is straightforward to solve this optimization problem for a 
small number of households.  The constrained optimization problem can be converted into an 
unconstrained optimization problem by parameterizing wi as exp(λi) or λi

2 and using well-
established gradient search methods to minimize the objective function.  However, in real-world 
applications, there are usually thousands of households in the sample and using gradient search 
methods would involve solving for thousands of λi to satisfy the first order conditions for 
minimizing the objective function.  This makes the solution of this optimization problem using 
traditional optimization methods computationally intractable.   

In this paper, a heuristic iterative procedure that is termed the Iterative Proportional Updating 
(IPU) algorithm is proposed as an approach to solve the problem described above.  As optimal 
solutions cannot be strictly guaranteed in the proposed algorithm, it is considered to be a 
heuristic algorithm wherein the analyst must monitor performance or goodness-of-fit to 
determine the point at which the algorithm should be terminated.  The idea behind the proposed 
algorithm is very intuitive and the algorithm itself is highly practical in terms of computational 
performance and goodness-of-fit.  In this section, the algorithm will be described using the 
simple example illustrated in Table 1.  The complete generalized procedure is presented in the 
next section of this paper.  

The IPU algorithm starts by assuming equal weights for all households in the sample.  The 
algorithm then proceeds by adjusting weights for each household/person constraint in an iterative 
fashion until the constraints are matched as closely as possible for both household and person 
attributes.  For example, the weights for the first household level constraint are adjusted by 
dividing the number of households in that category (i.e., the constraint value) by the weighted 
sum of the first household type column.  That ratio is 35/3 = 11.67.  The weights for all 
households of household type 1 are multiplied by this ratio to satisfy the constraint.  The weights 
for all households of household type 1 become equal to 11.67, and the weighted sum for 
household type 1 will be equal to the corresponding constraint, as shown in the row titled 
“weighted sum 1”.  Similarly, the weights for households of household type 2 are adjusted by an 
amount equal to 65/5 = 13.00.  The updated weights are shown in the “weights 2” column of 
Table 1, and one notes that the household level constraints are perfectly satisfied at this point 
(see the row titled “weighted sum 2”).   

The weights are next updated to satisfy person constraints.  For the first person-level 
constraint, the adjustment is calculated as the ratio of the constraint for person type 1 to weight 
sum of the person type 1 column after the completion of household-level adjustments.  This ratio 
is equal to 91/111.67 = 0.81. This value is used to update the weights of all households that have 
individuals of person type 1. As the fifth household (household ID 5) does not have any persons 
of type 1, the weight for this particular household remains unchanged.  The resulting adjusted 
weights are shown in Table 1 in the column titled “weights 3”.  The constraint corresponding to 
person type 1 is now perfectly matched.  The process is repeated for the other two person type 
constraints and the corresponding updated weights are shown in the columns titled “weights 4” 
and “weights 5” in Table 1.  The corresponding weighted sums are shown in the various rows of 
Table 1 titled “weighted sum”.   

The completion of all adjustments to weights for one full set of constraints is defined as one 
iteration.  It can be seen from Table 1 that the difference between the weighted sums and the 
corresponding constraints for the household/person types of interest has been considerably 
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reduced after one complete iteration.  The absolute value of the relative difference between the 
weighted sum and the corresponding constraint may be used as a goodness-of-fit measure and is 
defined as: 

j

jiji
j c

cwd −
=

,δ  (2) 

where all symbols are as denoted earlier in the context of equation (1).  The average value of this 
measure across all constraints is denoted by δ and serves as an overall goodness-of-fit measure 
after each complete iteration.  Prior to any adjustments being made to the weights, the value of δ, 
denoted δb, is found to be 0.9127.  After the completion of one full iteration, the value of δ, 
denoted δa, is found to be 0.0954, representing a substantial improvement in the matching of the 
weighted sample against known population numbers. The gain in fit between two consecutive 
iterations can be calculated as: 

Δ =| δa – δb |  (3) 
In this particular example, the gain in fit after one iteration is 0.8173.  The entire process is 
continued until the gain in fit is negligible or below a preset tolerance level.  This tolerance level 
serves as the convergence criterion at which the algorithm is terminated.  The weights are thus 
adjusted iteratively until the value of Δ is less than a small value, ε (say, 1 x 10-7).  Convergence 
criteria can be set as a reasonable compromise between desired goodness-of-fit and computation 
time.  Figure 1 shows the reduction in δ value as the number of iterations increases. The plot 
shows values of δ on the Y-axis on a logarithmic scale and the number of iterations along the X-
axis.  It can be seen that, after about 80 iterations, the curve flattens out to a value very close to 
zero.  After just 80 iterations, the average absolute relative difference across all constraints, δ, 
has reduced to 0.01, and after about 250 iterations, the δ value is 0.001.  

Final weights, obtained after completion of 638 iterations, for the households in the small 
example are shown in Table 1.  The corresponding δ value is very small (8.51 x 10-6), showing 
that the weighted sums almost perfectly match the household type and person type constraints.  It 
can be seen that the household weights for households belonging to a particular household type 
are no longer identical.  Essentially, the household weights have been reallocated so that both 
weighted household and person sums match (in this case, perfectly) the given constraints (see the 
row titled “final weighted sum”).   
 
A Geometric Interpretation of the Algorithm 
This subsection of the paper is devoted to explaining the logic underlying the IPU algorithm.  
Suppose there are two households belonging to the same household type (defined by a set of 
control variables of interest such as household size and income).  Let the first household 
(household 1) not have any persons of a particular person type and let the second household 
(household 2) have one member belonging to that person type category.  If the given constraints 
for the household type and the person type are respectively 4 and 3, the weights for satisfying the 
person and household constraints can be obtained by solving the following simultaneous linear 
equations: 

3
4
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21

=
=+

w
ww

  (4) 

where w1 and w2 represent the weights for household 1 and 2.  Straight lines representing the two 
linear equations in equation (4) can be plotted as shown in Figure 2a with w1 plotted on the 
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vertical axis and w2 plotted on the horizontal axis. The point of intersection, I, denotes the 
solution to the simultaneous equations in equation (4) and the coordinates of the point serve as 
the weights satisfying the given household and person constraints.   

The proposed IPU algorithm provides a mechanism by which one can iteratively reach the 
point of intersection (solution) by starting anywhere in the quadrant defined by w1 > 0, w2 > 0.  
Consider an arbitrary starting point, S, as shown in the figure.  A line is drawn connecting the 
starting point (S) and the origin such that it intersects the line w1 + w2 = 4 at point B and 
intersects the line w2 = 3 at point A. When the weights are proportionally updated with respect to 
the first constraint, the starting point is moved to point B as the coordinates of the starting point 
will be scaled by the same ratio in order to satisfy that constraint.  Then, the proportional update 
according to the second constraint will move the weight coordinates from point B to point C, 
because the update only changes the value of w2 (in this example), but does not change the value 
of w1. It is to be noted that point C can be obtained by drawing a line originating at point B 
perpendicular to the line w2 = 3. In the second iteration, the weight coordinates move from point 
C to point D, which is the intersection of line OC with the line w1 + w2 = 4. The subsequent 
update (with respect to the second constraint) will move the weight coordinates from point D to 
point E, which can be obtained by drawing a line from point D perpendicular to the line w2 = 3. It 
can be seen that, after every iteration, the weight coordinates are moving closer to the solution 
represented by the point of intersection I.  The process is repeated until the weight coordinates 
move as close as possible to point I.   

In practice, one is dealing with many constraints and the solution is unlikely to neatly fall 
into the first quadrant (perfect solution that matches both household and person constraints 
exactly).  For example, the solution may be in the fourth quadrant as shown in Figure 2b.  The 
figure shows a situation where the second constraint is changed to w2 = 5. If such a situation is 
encountered, the algorithm will move the weight coordinates closer to the solution point, I, but 
will never be able to reach the point I.  Eventually, the algorithm will move the weight 
coordinates back and forth (from one iteration to the next) between the points I1 and I2 where the 
two constraint equations intersect with the horizontal axis. In this instance, one can adopt a 
corner solution, usually corresponding to that which perfectly matches household constraints of 
interest.  Alternatively, one could adopt a solution in between I1 and I2 which would represent a 
compromise between matching household and person distributions. Given the historical 
precedence given to matching household attributes of interest (Beckman et al., 1996), the 
algorithm currently adopts a corner solution corresponding to this requirement.  However, it is to 
be noted that, even in this case, the algorithm provides considerable improvement in the match of 
person-level attributes over algorithms that do not adjust weights iteratively for both household 
and person level attributes.     

Another theoretical situation where the IPU algorithm will fail is that where a group of 
households belonging to the same household type account for all of the individuals of a 
particular person type.  That is, if one or more person types fall or appear exclusively in 
households of a single household type, then the algorithm will not be able to converge to a 
solution.  This happens because one obtains two straight lines representing the household and 
person constraints, neither of which is perpendicular to the coordinate axes.  The IPU algorithm 
will only be able to move the weight coordinates back and forth between two points on the lines, 
but cannot move them closer to the point of intersection.  This situation is virtually never 
encountered in practice and is of little consequence for most practical applications of the 
algorithm.  However, it is good practice to check for this potential problem when selecting the 
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control variables of interest against which synthetic population joint distributions must match 
observed distributions.  In the rare situation where this problem exists, the dimensions of interest 
can be changed or categories with very few households can be consolidated to overcome the 
problem.     

  The geometric example described in this subsection corresponds to a situation with only 
two dimensions (w1, w2).  This two-dimensional example can be easily extended to three or more 
dimensions.  For example, if there are three households belonging to the same household type, 
and one household constraint and one person constraint need to be satisfied, then the constraints 
can be represented by planes in a three-dimensional space.  The potential solution should be 
located on the line formed by the intersection of the two planes. It is possible to have an infinite 
number of solutions on that line or no solution at all in the instance when the line formed by the 
intersection of the planes lies in a space characterized by negative coordinates.  In most practical 
contexts, the IPU algorithm will reach a solution as long as solution(s) exist and all households 
of a single category do not account for all of the persons of a particular type.  The latter condition 
ensures that there is a plane perpendicular to one of the coordinate axes, which is critical to the 
progress of the IPU algorithm.   

In summary, the IPU algorithm provides a flexible mechanism for generating a synthetic 
population where both household and person-level attribute distributions can be matched very 
closely.  The IPU algorithm works with joint distributions of household and person attributes 
derived using the IPF method, and then iteratively adjusts and reallocates weights across 
households such that both household and person-level attribute distributions are matched as 
closely as possible.  The algorithm is flexible in that it can accommodate a multitude of 
household and person-level variables of interest and meets dual household- and person-level 
constraints with reasonable computational time.  These are some of the noteworthy features of 
the algorithm that distinguish it from previous synthetic population generation algorithms.  
 
The General Iterative Proportional Updating (IPU) Algorithm 
The IPU algorithm illustrated using the small examples in the previous subsections can be easily 
extended to accommodate multiple household and person type constraints in the estimation of 
suitable weights.  This subsection presents the general formulation of the algorithm in a step-by-
step manner.  The steps are as follows: 

1. Generate a frequency matrix D showing the household type and the frequency of 
different person types within each household for the sample. The dimension of the matrix 
generated will be N × m, where N is the number of households in the sample and m is the 
number of population characteristic (household type and person type) constraints. An 
element in the matrix di,j represents the contribution of household i to the frequency of 
population characteristic (household type/person type) j. 

2. Obtain joint distributions of household type and person type constraints using the 
standard IPF procedure and store the resulting estimates into a column vector C where cj 
represents the value of the population characteristic j and j = 1, 2, …, m. 

3. Initialize the weights vector represented by the column vector, W, such that wi = 1 where 
i = 1, 2, …, N.   

Also, initialize a scalar, 
m
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4. Initialize a scalar, r = 1, representing the iteration number.  
5. For each column j (j = 1, 2, …, m), record the indices (i.e., the row number or, in the 

context of the simple example, the household ID) into a column vector Sj, including only 
those that actually belong to household or person type j.  Let an entry in such a column 
vector be denoted by sqj where q is an index corresponding to non-zero elements in the jth 
column. For instance, in the simple example considered in Table 1, S1 would include 
elements (households) 1, 2, and 3; S2 would include elements 4, 5, 6, 7, and 8; and so on.  

6. Initialize a scalar k = 1 to serve as a constraint counter. 
7. Retrieve the indices sqk of all the non-zero elements in the kth column stored in Sk of Step 

5 where q is the index corresponding to non-zero elements in the kth column.  

8. Calculate the adjustment ρ for the kth constraint, 
∑ ×

=

q
sks

k

qkqk
wd

c

,
ρ   

9. Update the weights with respect to the kth constraint as
qkqk ss ww ρ= .  Recall that all 

initial weight values are set to one.  
10. Update k = k + 1. 
11. If k ≤ m, i.e., the weight have not been adjusted with respect to all population 

characteristic constraints, then go to Step 7; otherwise, proceed to Step 12. 
12. Set the value of a scalar, δprev = δ. 
13. Calculate the new value of δ corresponding to the current iteration, 
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14. Calculate the improvement in goodness-of-fit, Δ = | δ – δprev | . 
15. If δ < δmin, update δmin = δ, and store the corresponding weights in a column vector SW 

with elements swi = wi for i = 1, 2, …, N.  Otherwise, proceed to Step 16. 
16. Update the iteration number, r = r + 1. 
17. If Δ > ε (a small positive number, e.g., 1×10-4), go back to step 6.  Otherwise, 

convergence has been achieved and a solution is obtained. The selected weights are 
stored in the column vector SW corresponding to the smallest absolute relative difference 
δmin. 

The updated household weights are recorded in the column vector SW.  It should be noted that 
Step 15 in the algorithm is critical because the δ value is not always strictly decreasing.  As a 
result, it is necessary to ensure that weights corresponding to the minimum value of δ are 
retained at each iteration of the process.  

At the conclusion of the process outlined above, a perfect solution is obtained if it falls 
within the feasible range (positive quadrant in Figures 2a and 2b).  If, however, the solution does 
not fall within a feasible range, then additional steps may be warranted to choose the appropriate 
corner solution.  Given the emphasis on matching household-level constraints in current practice, 
the additional steps in the procedure proceed to the corner solution to ensure that household 
constraints are met perfectly. The steps are: 

18. Initialize a scalar h = 1, where h = 1, 2, … mh, where mh is the number of household 
constraints that need to be satisfied. 
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19. Retrieve the indices sqh of all the non-zero elements in the hth column stored in column 
vector Sh of Step 5.   

20. Calculate the adjustment ρ for the hth constraint, 
∑ ×

=

q
shs

h

qhqh
wd

c

,
ρ  

21. Update the weights with respect to the hth constraint as
qhqh ss swsw ρ= . 

22. Update h = h + 1. 
23. If h ≤ mh, go back to Step 18; otherwise, a corner solution has been reached and the 

algorithm is terminated.  
 
POPULATION SYNTHESIS FOR SMALL GEOGRAPHIC AREAS 
Population synthesis should be conducted at the smallest level of geography for which data is 
available.  This allows for retaining the location information and for maintaining the 
heterogeneity in attributes across the region when allocating the households to the street network.  
This is not possible if the population synthesis is conducted and households are allocated to the 
roadway network for a larger geography.  This aspect of population synthesis has been 
previously recognized and implemented in various studies including that by Beckman et al. 
(1996) who synthesized populations at the census tract level and Guo and Bhat (2006) who 
synthesized populations at the blockgroup level. In this study, the algorithm was used to 
synthesize a population for the entire Maricopa County region in Arizona.  This region has a 
population of more than three million persons in a little over 2000 blockgroups.  In the next 
section of this paper, results of population synthesis for two sample blockgroups are presented to 
demonstrate the real-world applicability of the IPU algorithm presented in this paper.  However, 
prior to doing that, it was considered beneficial to discuss solutions to two particular problems 
commonly encountered in dealing with small geographies.  This section presents a discussion of 
the two issues and the approaches adopted in this study to tackle these problems.  
 
Zero-cell Problem 
Beckman et al. (1996) suggested using joint distributions of PUMS households belonging to the 
Public Use Micro Area (PUMA) as prior information for estimating a blockgroup’s joint 
distribution with the IPF procedure.  However, this practice may lead to the zero-cell problem 
where a few cells may end up with zero frequencies for small geographies.  This may happen 
because the PUMA sample is a subsample of the PUMS, and some demographic groups may not 
appear in the joint tabulations although they are present in the marginal distributions of the 
population in the small geographic areas under consideration.  Guo and Bhat (2006) also note 
that this problem exists for small geographies.  The IPF procedure cannot converge to a solution 
when the zero-cell problem exists. Beckman et al. (1996) recommended adding an arbitrarily 
small value (e.g., 0.01) to zero cells in order to make the IPF procedure converge to a solution.  
However, Guo and Bhat (2006) note that this treatment may introduce an arbitrary bias.   

In this paper, an alternative method to account for the zero-cell problem is proposed.  The 
idea underlying the approach is to borrow the prior information for the zero cells from PUMS 
data for the entire region (where zero cells are not likely to exist as long as the control variables 
of interest and their categories are defined appropriately).  It may be reasonable to use 
probabilities estimated from the PUMS representing the entire region as substitutes for the zero-
cells in the small geography where this problem exists.  However, caution should be exercised 
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when adopting such an approach because there is a risk of over-representing the demographic 
group, which was rare in the small geography in the first place (as evidenced by the zero-cell 
value).  For example, suppose a PUMA contains 5000 households and let the probability 
associated with a zero-cell demographic group be 0.001 in the PUMS as a whole.  If one were to 
borrow this probability directly, then the frequency for that demographic group in the PUMA is 
expected to be 5.  However, the fact that the PUMA sample does not contain the demographic 
group at all suggests that the probability of occurrence of this group in the PUMA is likely to be 
less than the borrowed 0.001.  To overcome this potential problem, the approach in this study 
implements an upper-bound or threshold approach for borrowing probabilities.  If the threshold 
frequency for the zero cells is assumed to be unity, the upper bound of the borrowed probability 
may be considered to be 1 ÷ the total number of households in the PUMA.  In this case, that 
would be 1/5000 = 0.0002.  If the borrowed probability (from the PUMS) is less than this upper 
bound, it can be used to replace the zero cells.  Otherwise, the upper bound itself is used to 
replace the zero cells.  This procedure ensures that the estimated frequency for the zero-cells 
(infrequent demographic groups) is not over-estimated in the PUMA.  

It is to be noted that this approach (where zero cells are replaced with borrowed or threshold 
probabilities) will result in all probabilities adding up to a value greater than unity.  To correct 
this inconsistency, all of the non-zero cell probabilities are scaled down by a ratio, y = 1 – u, 
where u is the sum of the borrowed probabilities.  After this adjustment, all of the probabilities 
will add up to unity and the ratio of probability values between each pair of original non-zero 
cells will remain unchanged.  The procedure outlined in this section can be used to replace zero 
cells for certain rare demographic groups using borrowed probability values from the PUMS 
subject to an upper limit.  The IPF procedure can now be executed on the modified PUMA priors 
to estimate household and person level joint distributions for populations in virtually any small 
geography.   
 
The Zero-Marginal Problem 
The zero-marginal problem is encountered in the context of the IPU algorithm proposed in this 
paper.  In small geographical areas, it is reasonable to expect the marginal frequency distribution 
to take a value of zero for certain attributes.  For example, it is possible to have absolutely no 
low-income households residing in a particular blockgroup.  If so, all of the cells in the joint 
distribution corresponding to the low income category will take zero values as a result of the 
execution of the IPF procedure.  Then, when weights are computed using the proposed IPU 
algorithm (to match the zero constraints), all of the households in the PUMS contributing to that 
particular zero-marginal household type will take zero weights.  However, it is entirely possible 
that at least some of these households need to take non-zero weights to satisfy other non-zero 
constraints.  The iterative algorithm allows weights to be updated as one proceeds from one 
constraint to the next, but the algorithm cannot do so when certain households have zero weights.  
As the denominator will take a zero value in the calculation of the adjustment to the weights (as 
shown in Step 8 of the generalized procedure), the algorithm fails to proceed.  To overcome this 
problem, a small positive value (e.g., 0.01) is assigned to all zero-marginal categories.  The IPF 
procedure will distribute or allocate this small value to all of the relevant cells in the joint 
distribution and the cells in the resulting joint distribution will differ by a small amount 
compared to the situation where no adjustment is made to account for zero-marginals.  The effect 
of this adjustment on final IPF results is virtually negligible; however, this adjustment allows the 
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IPU algorithm to move forward with the adjustment of weights across all households to meet 
both household and person constraints.  
 
CASE STUDY  
This section presents results of the application of the proposed IPU algorithm for two random, 
but illustrative, blockgroups in the Maricopa County region of Arizona using year 2000 census 
data files.  According to the 2000 census, the Maricopa County region had a population of 
3,071,219 persons residing in 1,133,048 households in 2,088 blockgroups (25 blockgroups had 
zero households).  Marginal distributions on household and person variables were obtained from 
the Summary Files while the five-percent PUMS served as the sample from which to draw 
households for generating the synthetic population.  The PUMS included 254,205 persons 
residing in 95,066 households.  
 
Calibration of Weights 
For both blockgroups, the IPU algorithm was applied to satisfy household and person joint 
distributions generated using the standard IPF procedure with the adjustments noted in the 
previous section for zero-cell and zero-marginal problems.  The household joint distributions 
were generated using household type, household size, and household income as control variables 
while the person-level joint distributions were generated using gender, age, and ethnicity as 
control variables.  Table 2 presents a summary of the household and person-level variables and 
categories used in this case study.  The categorization scheme adopted in Table 2 resulted in 280 
cells for household level joint distribution and 140 cells for the person level joint distribution.  
As explained earlier, the IPF procedure was applied to generate joint distributions based on 
marginal distributions obtained from Census Summary Files.  Prior probability information on 
the joint distribution was obtained from the subsample of the PUMS corresponding to the PUMA 
to which the blockgroup belonged.  

The proposed IPU algorithm was applied to calibrate household weights to match both 
household and person level joint distributions. Figure 3a illustrates the reduction in average 
absolute relative difference across all constraints (δ). For the first blockgroup, the δ value 
reduced from 2.471 to 0.041 in 20 iterations.  The δ value for this blockgroup indicates that the 
algorithm reached a corner solution and the calibrated household weights result in a perfect 
match of household-level distributions, while simultaneously resulting in substantial reductions 
in inconsistencies with respect to person-level distributions (in comparison to traditional 
population synthesis procedures that generally match household attribute distributions).  For the 
second blockgroup, the value of δ reduces from 0.8151 to 0.00064 in 500 iterations as shown in 
Figure 3b.  Although 500 iterations were run for purposes of demonstration, about 100 iterations 
are sufficient to provide satisfactory weights in practice.  It can be seen that the average absolute 
relative difference (δ) is very close to zero, suggesting that a near-perfect solution was reached to 
match both household and person-level joint distributions of attributes.  
 
Drawing of Households   
After the calibration of weights using the IPU algorithm, households may be randomly drawn 
from the PUMS to generate the synthetic population.  The approach adopted in this study is 
similar to that adopted by Beckman et al. (1996), except that the probability with which a 
household is drawn is dependent on its assigned weight (from the IPU algorithm).  In the 
Beckman et al. (1996) procedure, the household level joint distributions obtained from the IPF 
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procedure are rounded off to the nearest integer (because the IPF procedure can result in many 
cells with decimal values).  Then, for each household type, households are drawn randomly from 
the set of PUMS households that belong to that particular category.  The number of households 
randomly drawn is equal to the frequency of that household type in the rounded joint distribution 
table.  This ensures that errors in the household level distribution between that of the synthetic 
population and that of the original PUMS will be no more than 0.5.   

The Beckman et al. (1996) procedure is appropriate in the context of matching household-
level joint distributions.  However, as the objective of the IPU algorithm is to match both 
household and person-level attribute distributions, different weights are assigned to different 
households that fall within the same household type category (because they presumably have 
different types of persons).  Hence the approach for drawing households to constitute the 
synthetic population is slightly different in this approach than that in Beckman et al. (1996).  In 
the IPU approach, the probability of a household being chosen is equal to its weight divided by 
the sum of weights of all households belonging to a particular household type.  As the IPU-
calibrated weights not only control for household-level attributes, but also person-level 
attributes, this weight-based procedure for probabilistically drawing households results in the 
generation of a synthetic population that closely matches household and person-level 
distributions.  

As noted previously, the household level joint distributions are rounded off to the nearest 
integer.  As a result of this rounding, the total number of households in the synthetic population 
will not be equal to the total number of households from the Census Summary Files.  As quite a 
few cells in the joint distribution take on a value less than one, rounded household totals will, 
more likely than not, be less than original household totals in the Summary Files.  For the two 
blockgroups considered here, total households in the synthetic population and original population 
were respectively 615 and 627 in the first blockgroup and 456 and 462 in the second blockgroup.  
This difference in household totals was resolved in the following manner.  The cell frequencies 
in the joint distributions of household attributes were compared – between that of the synthetic 
population and that generated by the IPF procedure using the PUMS subsample for the PUMA to 
which the blockgroup belonged. Differences in cell values were computed and arranged in 
descending order; then, the top-ranked 12 cells in the first blockgroup and the top-ranked six 
cells in the second blockgroup each received an additional household to resolve the difference.  
The cells were essentially ordered in descending order of the differences between the synthetic 
population cell frequencies and the observed IPF-generated cell frequencies.  Thus, one 
household was added to those cells where the discrepancies were largest.   
 
Performance Measures 
The IPU algorithm generates household-specific weights such that household-level distributions 
are matched perfectly and person-level distributions are matched as closely as possible.  As per 
the discussion in the previous subsection, households are drawn probabilistically using a Monte 
Carlo procedure in accordance with the weight that is allocated by the algorithm.  As the Monte 
Carlo procedure constitutes a probabilistic mechanism for drawing households, it is 
recommended that multiple synthetic populations be drawn and the synthetic population that best 
matches the person-level attribution distributions be chosen (note that the household-level 
distributions are always matched perfectly).   

It is necessary to establish a criterion by which the performance of the synthetic population 
generator (in matching joint distributions) can be assessed.  The average absolute relative 
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difference (δ value) used in the course of the algorithm itself is useful, but has a shortcoming 
particularly in the context of small geographies. The δ value cannot be used as an appropriate 
measure of fit because it masks the differences in magnitude between the estimated and desired 
joint distributions.  For example, the absolute relative error for a cell in the synthetic population 
that takes a value of 0, when the desired value is 0.2, is 100 percent.  Another cell that takes a 
value of one, when the desired value is 0.5, also has an absolute relative error of 100 percent.  
And yet another cell that takes a value of 200, when the desired value is 100, also has an absolute 
relative error of 100 percent.  While the differences in magnitude between the estimated and 
desired values may be acceptable in the first two scenarios, it is clearly not acceptable in the third 
scenario.  However, all three scenarios offer the same absolute relative error/difference values.  
From that standpoint, the δ value may not be a good measure for comparing the estimated and 
desired joint distributions and assessing the fit of the algorithm.  

An alternative measure of fit is the chi-square (χ2) statistic which is often used to statistically 
compare two distributions of interest.  The χ2 statistic, which serves as an appropriate measure of 
fit in the context of this study, may be calculated as follows: 
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where  i denotes household type (i = 1, 2, ..., N) 
j denotes the constraint or population characteristic of interest (j = 1, 2, ..., m) 
di,j represents the frequency of the population characteristic (household/person type) j in 

household i 
wi is the weight attributed to the ith household  
cj is the value of the population characteristic j. 

It should be noted that those cells which have zero values in the observed joint distribution 
(obtained by applying the standard IPF procedure on PUMS subsamples) are not included in the 
calculation of this statistic.  The test statistic, τ, follows a χ2 distribution with (J-1) degrees of 
freedom. Using the τ value, one may test the null hypothesis that the estimated frequency 
distribution matches the observed frequency distribution. The expression [1 – χ2

J-1(τ)] provides 
the probability of incorrectly rejecting the null hypothesis when, in fact, it is true, where χ2

J-1(.) 
represents the cumulative distribution function of the χ2 distribution with (J-1) degrees of 
freedom. Also, the value of χ2

J-1(τ) represents the level of confidence at which the estimated 
frequency distribution is considered to match the observed frequency distribution. 

The value of χ2
J-1(τ) serves as an appropriate measure of fit with respect to matching person-

level distributions (note again that household level distributions are matched perfectly).  From 
100 randomly drawn synthetic populations for the first blockgroup in this case study, it was 
found that about 27 populations exhibited a confidence level of less than 0.l, while 21 
populations exhibited a confidence level greater than 0.9, when the synthetic person-level joint 
distribution and the IPF-generated person-level joint distribution were compared.  Based on these 
numbers, it is possible to approximate the number of draws required to obtain a synthetic 
population with the desired person-level distribution.  It is estimated that one should draw a 
synthetic population at least 13 times to ensure a high degree of performance wherein the 
probability of obtaining at least one synthetic population with a confidence level better than 0.9 
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is more than 0.95.  As the probability can be calculated as [1 – (1 – 0.21)n], where n represents 
the number of trials, n must be greater than 13 to obtain a probability level greater than 0.95. 
However, in view of computational performance considerations, it is desirable to limit the 
number of trials.  For the two blockgroups considered in this case study, 20 synthetic populations 
were created using the described probabilistic procedure and the one with the best τ was chosen. 

The best synthetic population (lowest τ value) for the first blockgroup provided a χ2 value of 
74.77 with 119 degrees of freedom.  The corresponding p-value is 0.999, indicating a high level 
of confidence that the estimated joint distribution (of person attributes) matches the observed 
distribution. Similarly, the best synthetic population for the second blockgroup provided a χ2 
value of 52.01 with 99 degrees of freedom (recall that zero cells are omitted).  The corresponding 
p-value is 1.000, once again indicating a high level of confidence that the estimated and observed 
joint distributions match each other.  

The similarity between the synthetic population person-level distribution and the IPF-
generated person-level distribution is visually illustrated in Figures 4a and 4b.  A point in each 
scatter plot represents one cell in the person-level joint distribution of interest.  The Y-coordinate 
represents the cell frequency in the synthetic population, while the X-coordinate represents the 
cell frequency in the observed IPF-generated joint distribution.  If the corresponding cell 
frequencies match perfectly, then the points should fall on a 45o straight line.  Two sets of points 
are plotted for comparison purposes.  One set of points is that obtained using traditional IPF 
procedures for generating synthetic populations.  In this procedure, household attribute 
distributions are matched, and then entire households are randomly drawn without consideration 
for matching person-level distributions.  The other set of points is that obtained using the IPU 
algorithm proposed in this paper, wherein both household and person-level distributions are 
matched as closely as possible.  It can be seen from the plots that, for both blockgroups, the 
proposed IPU algorithm better replicates the observed or desired IPF-generated joint distribution.  
The cell frequency points corresponding to the comparison between the IPU and IPF-generated 
person-level joint distributions fall more closely along the 45o line than the set of points obtained 
using standard traditional IPF procedures for generating a synthetic population.  It is also 
noteworthy that the χ2 test statistic assessing the fit of the person-level joint distribution obtained 
using the traditional IPF procedure strongly rejects the null hypothesis that the synthetic 
population distribution matches the observed joint distribution.  All of these findings suggest that 
the adjustments in weights made by the IPU algorithm offer considerable benefits in matching 
person-level distributions while ensuring that household-level attributes are matched perfectly. 

The proposed IPU algorithm was applied to generate a synthetic population for the entire 
Maricopa County region of Arizona.  Synthetic populations were created for all 2088 
blockgroups that had a positive number of households (zero household blockgroups were not 
included in the population generation procedure).  A Dell Precision Workstation with Quad Core 
Intel Xeon processor was used to run the entire algorithm.  The algorithm was coded in Python – 
a dynamic open-source object-oriented programming language and the data was stored and 
accessed using MySQL – a commonly used open source database solution.  The code was 
parallelized to take advantage of the multiple cores in the processor.  The total processing time in 
a single-core configuration was approximately 16 hours, an average of 27 seconds per 
blockgroup.  As the code was parallelized to take advantage of the Quad Core processor, the 
computational time to generate an entire synthetic population was reduced to approximately four 
hours, an average of seven seconds per blockgroup.  A dual–core processor would have resulted 
in a computation time of eight hours, an average of 14 seconds per blockgroup. The presence of 
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multiple cores does not necessarily reduce total processing time, but does reduce the computation 
time taken to probabilistically generate synthetic populations because of the parallel processing.  

According to the 2000 Census Summary Files, a total of 3,071,219 people resided in 
1,133,048 households within the 2088 blockgroups.  The synthetic population generated using 
the IPU algorithm resulted in a virtual match in terms of the number of households, with the 
number of synthetic households generated equal to 1,133,039.  The number of synthetic persons 
generated using the IPU algorithm was equal to 2,929,679, a 4.6 percent difference relative to the 
actual number of persons in the population.   
 
CONCLUSIONS 
This paper presents a heuristic iterative approach, dubbed the Iterative Proportational Updating 
(IPU) algorithm, for generating a synthetic population while simultaneously matching both 
household-level and person-level joint distributions of control variables of interest.  In traditional 
population synthesis procedures, only household-level joint distributions are matched using the 
standard iterative proportional fitting (IPF) procedure, and entire households are randomly drawn 
according to the the IPF-generated household-level joint distribution.  Little regard is given to 
matching person-level distributions (all of the persons in the drawn households become part of 
the synthetic population).  This results in a synthetic population wherein the household 
distributions are matched, but the person-level distributions are not likely to be matched well 
simply because all households in a certain cell of the joint distribution receive the same weight.  
In contrast to that approach, the IPU algorithm iteratively adjusts and reallocates weights among 
households so that person-level distributions are matched as closely as possible without 
compromising on the fit to household-level distributions.  The paper presents the algorithm in 
detail, illustrates the algorithm using a small example, and then offers real-world case study 
results for small geographies (blockgroups) in the Maricopa County region of Arizona.   

It is to be noted that the total number of household or person types (i.e., the number of cells 
in the joint distributions) plays an important role in determining the degree to which the person 
attributes will be matched by the proposed IPU algorithm.  As the level of disaggregation 
increases, the frequency in each cell will drop.  When this happens, one has less flexibility in 
reallocating weights across households of a certain type (cell) and this results in a poorer ability 
to replicate or fit to person-level joint distributions.  In particular, cells that have only one 
household or one individual hinder the ability to match person-level distributions.  In applying 
the IPU algorithm, one should examine cell frequencies in joint distributions carefully and 
consolidate sparse categories so that the performance of the IPU algorithm can be enhanced.  The 
IPU algorithm will function even in the presence of sparse cells; however, the fit with respect to 
person-level distributions will not be as good as what might have been achieved in the absence of 
the sparse cells.  In the extreme case where all persons of certain types completely fall into a 
single household type, the algorithm fails.  Although this situation rarely, if ever, occurs in 
practice, it is still worthwhile to examine joint distributions and ensure that this problem is 
avoided by consolidating appropriate household or person categories where cell frequencies are 
very small.  In ongoing and future research, the authors are analyzing the sensitivity of the 
algorithm performance with respect to the number of cells that have small values and the 
frequency of observations in these cells.  This ongoing research will provide a basis to determine 
cell threshold values at which the performance of the algorithm is seriously compromised.   

The proposed algorithm has the potential to be useful in other applications as well.  For 
example, the algorithm may be applied to calibrate survey weights for travel survey samples.  
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Household travel surveys involve collecting data from samples of respondents at the household, 
person, vehicle, and trip level.  Often, one encounters data sets where there are three or four sets 
of weights corresponding to each of these behavioral units to match survey distributions against 
known population distributions.  Using the IPU algorithm, it may be possible to generate a 
unique set of weights that can simultaneously satisfy household, person, vehicle, and trip-level 
distributions of interest, and reduce the need to generate and maintain multiple weights at each 
level of analysis.  In general, any application where one is interested in weighting and expanding 
a sample to simultaneously match or fit to multiple distributions (constraints) may benefit from 
the use of the IPU algorithm proposed in this paper.   Future research efforts will involve the 
incorporation of model components that evolve the synthetic population over time (Goulias and 
Kitamura, 1996).  
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Table 1. An Example of the Iterative Proportional Updating (IPU) Algorithm 
Household ID Weights Household 

Type 1 
Household 

Type 2 
Person 
Type 1 

Person 
Type 2 

Person 
Type 3 

Weights 
1 

Weights 
2 

Weights 
3 

Weights 
4 

Weights 
5 

Final 
Weights 

1 1 1 0 1 1 1 11.67 11.67 9.51 8.05 12.37 1.36 
2 1 1 0 1 0 1 11.67 11.67 9.51 9.51 14.61 25.66 
3 1 1 0 2 1 0 11.67 11.67 9.51 8.05 8.05 7.98 
4 1 0 1 1 0 2 1.00 13.00 10.59 10.59 16.28 27.79 
5 1 0 1 0 2 1 1.00 13.00 13.00 11.00 16.91 18.45 
6 1 0 1 1 1 0 1.00 13.00 10.59 8.97 8.97 8.64 
7 1 0 1 2 1 2 1.00 13.00 10.59 8.97 13.78 1.47 
8 1 0 1 1 1 0 1.00 13.00 10.59 8.97 8.97 8.64 

Weighted Sum   3.00 5.00 9.00 7.00 7.00             
Constraints   35.00 65.00 91.00 65.00 104.00             

δb   0.9143 0.9231 0.9011 0.8923 0.9327             
Weighted Sum 1   35.00 5.00 51.67 28.33 28.33             
Weighted Sum 2   35.00 65.00 111.67 88.33 88.33             
Weighted Sum 3   28.52 55.38 91.00 76.80 74.39             
Weighted Sum 4   25.60 48.50 80.11 65.00 67.68             
Weighted Sum 5   35.02 64.90 104.84 85.94 104.00             

δa  0.0006 0.0015 0.1521 0.3222 0.0000         
Final Weighted 

Sum   35.00 65.00 91.00 65.00 104.00             
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Table 2. Household and Person Level Attributes Used for Case Study 
Household Attributes Description Value 
Household Type Family: Married Couple 1 

 Family: Male Householder, No Wife 2 
 Family: Female Householder, No Husband 3 
 Non-family: Householder Alone 4 
 Non-family: Householder Not Alone 5 

Household Size 1 Person 1 
 2 Persons 2 
 3 Persons 3 
 4 Persons 4 
 5 Persons 5 
 6 Persons 6 
 7 or more Persons 7 

Household Income $0 - $14,999  1 
 $15,000 - $24,999  2 
 $25,000 - $34,999  3 
 $35,000 - $44,999  4 
 $45,000 - $59,999  5 
 $60,000 - $99,999  6 
 $100,000 - $149,999  7 
 Over $150,000  8 

Person attributes   
Gender Male 1 

 Female 2 
Age Under 5 years 1 

 5 to 14 years 2 
 15 to 24 years 3 
 25 to 34 years 4 
 35 to 44 years 5 
 45 to 54 years 6 
 55 to 64 years 7 
 65 to 74 years 8 
 75 to 84 years 9 
 85 and more 10 

Ethnicity White alone 1 
 Black or African American alone 2 
 American Indian and Alask Native alone 3 
 Asian alone 4 
 Native Hawaiian and Other Pacific Islander alone 5 
 Some other race alone 6 
 Two or more races 7 
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Figure 1. Reduction in Average Absolute Relative Difference for the Illustrative Example 
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Figure 3a. Reduction in Average Absolute Relative Difference for the First Blockgroup 

 
 

 

 
Figure 3b. Reduction in Average Absolute Relative Difference for the Second Blockgroup 
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Figure 4a. Plot of IPF-estimated and IPU-Generated Person Joint Distribution Cell Frequencies 

for the First Blockgroup (Number of Cells = 140) 
 

 
Figure 4b. Plot of IPF-estimated and IPU-Generated Person Joint Distribution Cell Frequencies 

for the Second Blockgroup (Number of Cells = 140) 
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