

ICF International

Truck Emission Reduction Strategies

Presentation overview

- Baseline emissions
- Emission reduction strategies
- Policy issues

Zero-Emission Technology Strategy

- Two-pronged approach
 - An aggressive program to bring more clean fuel / hybrid trucks into service represents the best near-term strategy
 - A regional freight corridor program represents an opportunity to commercialize zeroemission technologies and build incentives into an existing program (e.g., the RTP)

Current goods movement emissions

Heavy duty trucks – baseline NOx

Heavy duty trucks – baseline PM2.5

Heavy duty trucks – baseline GHGs

Near-term: Impact of ARB's In-Use Truck & Bus Rule

 By 2023, nearly all HDVs will be model year 2010 or newer

- Accelerating turnover will produce no significant emissions benefits
- So ... further emission reductions must come from introduction of advanced technology HDVs

Truck advanced technology options

- Advanced natural gas engines
- Hybrid technologies
- Plug-in hybrid technologies
- Battery electric technologies

Natural gas engines

- Available today for most applications
- Emissions reductions per truck

Class 3 Gasoline			Class 8b Diesel				
NOx	PM	GHGs	NOx	NOx PM			
20-30%	0%	21-38%	35-50%	10-30%	20-37%		

- Incremental cost per truck
 - Class 3: \$15-20K
 - Class 8: \$35-45K
- Fueling infrastructure needed

Hybrid technologies

- Available today for most single-unit trucks
- Limited availability for Class 8; more in next few years
- Emissions reductions per truck

Class 3 Gasoline			Class 8b Diesel				
NOx	PM	GHGs	NOx	PM	GHGs		
11-21%	21-31%	20-35%	31-41%	4-24%	5-20%		

- Incremental costs per truck
 - Class 3: \$10-15K; potential to decrease 50% by 2035
 - Class 8: \$55-60K; potential to decrease 50% by 2035

Plug-in hybrid technologies

- Demonstration stage
- Emissions reductions per truck

Class 3 Gasoline			Class 8b Diesel				
NOx	PM	GHGs	NOx	NOx PM			
68-78%	43-58%	42-52%	28-58%	9-33%	10-25%		

- Incremental costs per truck
 - Class 3: \$20-30K; potential to decrease 50% by 2035
 - Class 8: \$70-100K; potential to decrease 50% by 2035
- Charging infrastructure needed
- Could potentially use wayside power

Battery electric technologies

- Demonstration stage
- Emissions reductions per truck

Class 3 Gasoline			Class 8b Diesel				
NOx	PM	GHGs	NOx	NOx PM			
100%	58-66%	52-60%	100%	76-84%	51-59%		

- Incremental costs per truck
 - Class 3: \$30-50K; potential to decrease 50% by 2035
 - Class 8: \$100-135K; potential to decrease 50% by 2035
- Charging infrastructure needed
- Could potentially use wayside power

Emission reduction (per HHDV)

Deployment scenarios

- Assume technology deployed in first year available for each weight class
- Assume cost is incremental purchase price of vehicle

Deployment scenario - 2023

- Example: if 20% of new vehicle purchases are advanced technology
- Results for 2023:

	Assumed first year of commercial	Baseline	NOx Reduction	% of	Baseline	PM2.5 eline Reduction % of		Capital Cost (Millions)	
Technology	availability	(tpd)	(tpd)	Baseline	(tpd)	(tpd)	Baseline	Vehicles	Infrastr.
Natural Gas	2012	76.2	4.8	6%	2.6	0.09	3%	\$1,433	\$131
Hybrid Electric	2012-14		4.2	6%		0.07	3%	\$1,432	\$0
Plug-In Hybrid	2016-20		3.9	5%		0.08	3%	\$989	\$138
Battery Electric	2017-23		3.6	5%		0.09	4%	\$882	\$234

Deployment scenario - 2035

- Example: if 20% of new vehicle purchases are advanced technology
- Results for 2035:

	Assumed first year of commercial	NOx Baseline Reduction % of			PM2.5 Baseline Reduction % of			Capital Cost (Millions)	
Technology	availability	(tpd)	(tpd)	Baseline	(tpd)	(tpd)	Baseline	Vehicles	Infrastr.
Natural Gas	2012	88.0	6.4	8%	3.3	0.10	4%	\$1,956	\$177
Hybrid Electric	2012-14		5.9	8%		0.09	3%	\$1,591	\$0
Plug-In Hybrid	2016-20		8.3	11%		0.16	6%	\$1,910	\$199
Battery Electric	2017-23		14.9	20%		0.39	15%	\$2,126	\$359

Deployment scenario – 100% of new purchases are advanced technology

Potential mechanisms to accelerate clean truck deployment

- New emission standards
 - Outside control of SCAG and regional partners
- Vehicle purchase subsidies
 - Buy down incremental cost; like Carl Moyer
- Access control
 - Highway segments and/or major terminals (e.g., ports)
 - Need to couple with vehicle incentives
- Clean truck technology infrastructure
 - Wayside power
 - Charging / fueling infrastructure

Operational & maintenance strategies

- Maximize use of on-dock rail
 - Actively pursued by ports
- Expand use of near-dock rail
 - SCIG and ICTF expansion
- Railroad grade separation
 - Safety and mobility benefits
- Railroad capacity expansion
 - Minimize train delay/idling

Operational & maintenance strategies cont.

- Truck idle reduction
 - Expand enforcement of ARB rule
 - Use permits for new/expanded warehouses
- New truck I&M program
 - Concern about SCR systems
- System management
 - Bottleneck relief
 - Incident management for trucks

Truck strategies – Policy implications

- Freight corridor with access restrictions and/or wayside power:
 - Could potentially accelerate low/zero emission truck deployment
 - Will affect only a portion of regional truck VMT
- Significant <u>regional</u> HDV emission reductions will require vehicle purchase incentives
- Investments in clean truck infrastructure should maximize flexibility to avoid stranded capital